| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrreggt1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | simp1 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  𝐺  ∈   FriendGraph  ) | 
						
							| 3 |  | simp2 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  𝑉  ∈  Fin ) | 
						
							| 4 |  | hashcl | ⊢ ( 𝑉  ∈  Fin  →  ( ♯ ‘ 𝑉 )  ∈  ℕ0 ) | 
						
							| 5 |  | 0red | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  0  ∈  ℝ ) | 
						
							| 6 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 7 | 6 | a1i | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  3  ∈  ℝ ) | 
						
							| 8 |  | nn0re | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( ♯ ‘ 𝑉 )  ∈  ℝ ) | 
						
							| 9 | 5 7 8 | 3jca | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( 0  ∈  ℝ  ∧  3  ∈  ℝ  ∧  ( ♯ ‘ 𝑉 )  ∈  ℝ ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ( 0  ∈  ℝ  ∧  3  ∈  ℝ  ∧  ( ♯ ‘ 𝑉 )  ∈  ℝ ) ) | 
						
							| 11 |  | 3pos | ⊢ 0  <  3 | 
						
							| 12 | 11 | a1i | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  0  <  3 ) | 
						
							| 13 |  | simpr | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  3  <  ( ♯ ‘ 𝑉 ) ) | 
						
							| 14 |  | lttr | ⊢ ( ( 0  ∈  ℝ  ∧  3  ∈  ℝ  ∧  ( ♯ ‘ 𝑉 )  ∈  ℝ )  →  ( ( 0  <  3  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  0  <  ( ♯ ‘ 𝑉 ) ) ) | 
						
							| 15 | 14 | imp | ⊢ ( ( ( 0  ∈  ℝ  ∧  3  ∈  ℝ  ∧  ( ♯ ‘ 𝑉 )  ∈  ℝ )  ∧  ( 0  <  3  ∧  3  <  ( ♯ ‘ 𝑉 ) ) )  →  0  <  ( ♯ ‘ 𝑉 ) ) | 
						
							| 16 | 10 12 13 15 | syl12anc | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  0  <  ( ♯ ‘ 𝑉 ) ) | 
						
							| 17 | 16 | ex | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( 3  <  ( ♯ ‘ 𝑉 )  →  0  <  ( ♯ ‘ 𝑉 ) ) ) | 
						
							| 18 |  | ltne | ⊢ ( ( 0  ∈  ℝ  ∧  0  <  ( ♯ ‘ 𝑉 ) )  →  ( ♯ ‘ 𝑉 )  ≠  0 ) | 
						
							| 19 | 5 17 18 | syl6an | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( 3  <  ( ♯ ‘ 𝑉 )  →  ( ♯ ‘ 𝑉 )  ≠  0 ) ) | 
						
							| 20 |  | hasheq0 | ⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  =  0  ↔  𝑉  =  ∅ ) ) | 
						
							| 21 | 20 | necon3bid | ⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  ≠  0  ↔  𝑉  ≠  ∅ ) ) | 
						
							| 22 | 21 | biimpcd | ⊢ ( ( ♯ ‘ 𝑉 )  ≠  0  →  ( 𝑉  ∈  Fin  →  𝑉  ≠  ∅ ) ) | 
						
							| 23 | 19 22 | syl6 | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( 3  <  ( ♯ ‘ 𝑉 )  →  ( 𝑉  ∈  Fin  →  𝑉  ≠  ∅ ) ) ) | 
						
							| 24 | 23 | com23 | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( 𝑉  ∈  Fin  →  ( 3  <  ( ♯ ‘ 𝑉 )  →  𝑉  ≠  ∅ ) ) ) | 
						
							| 25 | 4 24 | mpcom | ⊢ ( 𝑉  ∈  Fin  →  ( 3  <  ( ♯ ‘ 𝑉 )  →  𝑉  ≠  ∅ ) ) | 
						
							| 26 | 25 | a1i | ⊢ ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ∈  Fin  →  ( 3  <  ( ♯ ‘ 𝑉 )  →  𝑉  ≠  ∅ ) ) ) | 
						
							| 27 | 26 | 3imp | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  𝑉  ≠  ∅ ) | 
						
							| 28 | 2 3 27 | 3jca | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) ) | 
						
							| 29 | 28 | ad2antrl | ⊢ ( ( 𝐺  RegUSGraph  𝑘  ∧  ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  ∧  𝑘  ∈  ℕ0 ) )  →  ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) ) | 
						
							| 30 |  | simpl | ⊢ ( ( 𝐺  RegUSGraph  𝑘  ∧  ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  ∧  𝑘  ∈  ℕ0 ) )  →  𝐺  RegUSGraph  𝑘 ) | 
						
							| 31 | 1 | frgrregord13 | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝑘 )  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) | 
						
							| 32 | 29 30 31 | syl2anc | ⊢ ( ( 𝐺  RegUSGraph  𝑘  ∧  ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  ∧  𝑘  ∈  ℕ0 ) )  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) | 
						
							| 33 |  | 1red | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  1  ∈  ℝ ) | 
						
							| 34 | 6 | a1i | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  3  ∈  ℝ ) | 
						
							| 35 | 8 | adantr | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ( ♯ ‘ 𝑉 )  ∈  ℝ ) | 
						
							| 36 |  | 1lt3 | ⊢ 1  <  3 | 
						
							| 37 | 36 | a1i | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  1  <  3 ) | 
						
							| 38 | 33 34 35 37 13 | lttrd | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  1  <  ( ♯ ‘ 𝑉 ) ) | 
						
							| 39 | 33 38 | gtned | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ( ♯ ‘ 𝑉 )  ≠  1 ) | 
						
							| 40 |  | eqneqall | ⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  ( ( ♯ ‘ 𝑉 )  ≠  1  →  ¬  𝐺  RegUSGraph  𝑘 ) ) | 
						
							| 41 | 39 40 | syl5com | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ( ( ♯ ‘ 𝑉 )  =  1  →  ¬  𝐺  RegUSGraph  𝑘 ) ) | 
						
							| 42 |  | ltne | ⊢ ( ( 3  ∈  ℝ  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ( ♯ ‘ 𝑉 )  ≠  3 ) | 
						
							| 43 | 7 42 | sylan | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ( ♯ ‘ 𝑉 )  ≠  3 ) | 
						
							| 44 |  | eqneqall | ⊢ ( ( ♯ ‘ 𝑉 )  =  3  →  ( ( ♯ ‘ 𝑉 )  ≠  3  →  ¬  𝐺  RegUSGraph  𝑘 ) ) | 
						
							| 45 | 43 44 | syl5com | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ( ( ♯ ‘ 𝑉 )  =  3  →  ¬  𝐺  RegUSGraph  𝑘 ) ) | 
						
							| 46 | 41 45 | jaod | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ( ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 )  →  ¬  𝐺  RegUSGraph  𝑘 ) ) | 
						
							| 47 | 46 | ex | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( 3  <  ( ♯ ‘ 𝑉 )  →  ( ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 )  →  ¬  𝐺  RegUSGraph  𝑘 ) ) ) | 
						
							| 48 | 4 47 | syl | ⊢ ( 𝑉  ∈  Fin  →  ( 3  <  ( ♯ ‘ 𝑉 )  →  ( ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 )  →  ¬  𝐺  RegUSGraph  𝑘 ) ) ) | 
						
							| 49 | 48 | a1i | ⊢ ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ∈  Fin  →  ( 3  <  ( ♯ ‘ 𝑉 )  →  ( ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 )  →  ¬  𝐺  RegUSGraph  𝑘 ) ) ) ) | 
						
							| 50 | 49 | 3imp | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ( ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 )  →  ¬  𝐺  RegUSGraph  𝑘 ) ) | 
						
							| 51 | 50 | ad2antrl | ⊢ ( ( 𝐺  RegUSGraph  𝑘  ∧  ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  ∧  𝑘  ∈  ℕ0 ) )  →  ( ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 )  →  ¬  𝐺  RegUSGraph  𝑘 ) ) | 
						
							| 52 | 32 51 | mpd | ⊢ ( ( 𝐺  RegUSGraph  𝑘  ∧  ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  ∧  𝑘  ∈  ℕ0 ) )  →  ¬  𝐺  RegUSGraph  𝑘 ) | 
						
							| 53 | 52 | ex | ⊢ ( 𝐺  RegUSGraph  𝑘  →  ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  ∧  𝑘  ∈  ℕ0 )  →  ¬  𝐺  RegUSGraph  𝑘 ) ) | 
						
							| 54 |  | ax-1 | ⊢ ( ¬  𝐺  RegUSGraph  𝑘  →  ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  ∧  𝑘  ∈  ℕ0 )  →  ¬  𝐺  RegUSGraph  𝑘 ) ) | 
						
							| 55 | 53 54 | pm2.61i | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  ∧  𝑘  ∈  ℕ0 )  →  ¬  𝐺  RegUSGraph  𝑘 ) | 
						
							| 56 | 55 | ralrimiva | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ∀ 𝑘  ∈  ℕ0 ¬  𝐺  RegUSGraph  𝑘 ) |