| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrreggt1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | frgrregorufrg | ⊢ ( 𝐺  ∈   FriendGraph   →  ∀ 𝑘  ∈  ℕ0 ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ∀ 𝑘  ∈  ℕ0 ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 5 | 1 | frgrogt3nreg | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ∀ 𝑘  ∈  ℕ0 ¬  𝐺  RegUSGraph  𝑘 ) | 
						
							| 6 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 7 | 6 | anim1i | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin )  →  ( 𝐺  ∈  USGraph  ∧  𝑉  ∈  Fin ) ) | 
						
							| 8 | 1 | isfusgr | ⊢ ( 𝐺  ∈  FinUSGraph  ↔  ( 𝐺  ∈  USGraph  ∧  𝑉  ∈  Fin ) ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin )  →  𝐺  ∈  FinUSGraph ) | 
						
							| 10 | 9 | 3adant3 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  𝐺  ∈  FinUSGraph ) | 
						
							| 11 |  | 0red | ⊢ ( ( 𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  0  ∈  ℝ ) | 
						
							| 12 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  3  ∈  ℝ ) | 
						
							| 14 |  | hashcl | ⊢ ( 𝑉  ∈  Fin  →  ( ♯ ‘ 𝑉 )  ∈  ℕ0 ) | 
						
							| 15 | 14 | nn0red | ⊢ ( 𝑉  ∈  Fin  →  ( ♯ ‘ 𝑉 )  ∈  ℝ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ( ♯ ‘ 𝑉 )  ∈  ℝ ) | 
						
							| 17 |  | 3pos | ⊢ 0  <  3 | 
						
							| 18 | 17 | a1i | ⊢ ( ( 𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  0  <  3 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  3  <  ( ♯ ‘ 𝑉 ) ) | 
						
							| 20 | 11 13 16 18 19 | lttrd | ⊢ ( ( 𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  0  <  ( ♯ ‘ 𝑉 ) ) | 
						
							| 21 | 20 | gt0ne0d | ⊢ ( ( 𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ( ♯ ‘ 𝑉 )  ≠  0 ) | 
						
							| 22 |  | hasheq0 | ⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  =  0  ↔  𝑉  =  ∅ ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ( ( ♯ ‘ 𝑉 )  =  0  ↔  𝑉  =  ∅ ) ) | 
						
							| 24 | 23 | necon3bid | ⊢ ( ( 𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ( ( ♯ ‘ 𝑉 )  ≠  0  ↔  𝑉  ≠  ∅ ) ) | 
						
							| 25 | 21 24 | mpbid | ⊢ ( ( 𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  𝑉  ≠  ∅ ) | 
						
							| 26 | 25 | 3adant1 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  𝑉  ≠  ∅ ) | 
						
							| 27 | 1 | fusgrn0degnn0 | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  ∃ 𝑡  ∈  𝑉 ∃ 𝑚  ∈  ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 )  =  𝑚 ) | 
						
							| 28 | 10 26 27 | syl2anc | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ∃ 𝑡  ∈  𝑉 ∃ 𝑚  ∈  ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 )  =  𝑚 ) | 
						
							| 29 |  | r19.26 | ⊢ ( ∀ 𝑘  ∈  ℕ0 ( ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ¬  𝐺  RegUSGraph  𝑘 )  ↔  ( ∀ 𝑘  ∈  ℕ0 ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ∀ 𝑘  ∈  ℕ0 ¬  𝐺  RegUSGraph  𝑘 ) ) | 
						
							| 30 |  | simpllr | ⊢ ( ( ( ( 𝑡  ∈  𝑉  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 )  =  𝑚 )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 31 |  | fveqeq2 | ⊢ ( 𝑢  =  𝑡  →  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑚  ↔  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 )  =  𝑚 ) ) | 
						
							| 32 | 31 | rspcev | ⊢ ( ( 𝑡  ∈  𝑉  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 )  =  𝑚 )  →  ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑚 ) | 
						
							| 33 | 32 | ad4ant13 | ⊢ ( ( ( ( 𝑡  ∈  𝑉  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 )  =  𝑚 )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) ) )  →  ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑚 ) | 
						
							| 34 |  | ornld | ⊢ ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑚  →  ( ( ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑚  →  ( 𝐺  RegUSGraph  𝑚  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ¬  𝐺  RegUSGraph  𝑚 )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 35 | 33 34 | syl | ⊢ ( ( ( ( 𝑡  ∈  𝑉  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 )  =  𝑚 )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) ) )  →  ( ( ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑚  →  ( 𝐺  RegUSGraph  𝑚  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ¬  𝐺  RegUSGraph  𝑚 )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( ( ( 𝑡  ∈  𝑉  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 )  =  𝑚 )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) ) )  ∧  𝑘  =  𝑚 )  →  ( ( ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑚  →  ( 𝐺  RegUSGraph  𝑚  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ¬  𝐺  RegUSGraph  𝑚 )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 37 |  | eqeq2 | ⊢ ( 𝑘  =  𝑚  →  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  ↔  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑚 ) ) | 
						
							| 38 | 37 | rexbidv | ⊢ ( 𝑘  =  𝑚  →  ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  ↔  ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑚 ) ) | 
						
							| 39 |  | breq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝐺  RegUSGraph  𝑘  ↔  𝐺  RegUSGraph  𝑚 ) ) | 
						
							| 40 | 39 | orbi1d | ⊢ ( 𝑘  =  𝑚  →  ( ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( 𝐺  RegUSGraph  𝑚  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 41 | 38 40 | imbi12d | ⊢ ( 𝑘  =  𝑚  →  ( ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  ↔  ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑚  →  ( 𝐺  RegUSGraph  𝑚  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 42 | 39 | notbid | ⊢ ( 𝑘  =  𝑚  →  ( ¬  𝐺  RegUSGraph  𝑘  ↔  ¬  𝐺  RegUSGraph  𝑚 ) ) | 
						
							| 43 | 41 42 | anbi12d | ⊢ ( 𝑘  =  𝑚  →  ( ( ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ¬  𝐺  RegUSGraph  𝑘 )  ↔  ( ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑚  →  ( 𝐺  RegUSGraph  𝑚  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ¬  𝐺  RegUSGraph  𝑚 ) ) ) | 
						
							| 44 | 43 | imbi1d | ⊢ ( 𝑘  =  𝑚  →  ( ( ( ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ¬  𝐺  RegUSGraph  𝑘 )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( ( ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑚  →  ( 𝐺  RegUSGraph  𝑚  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ¬  𝐺  RegUSGraph  𝑚 )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( ( ( ( 𝑡  ∈  𝑉  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 )  =  𝑚 )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) ) )  ∧  𝑘  =  𝑚 )  →  ( ( ( ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ¬  𝐺  RegUSGraph  𝑘 )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( ( ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑚  →  ( 𝐺  RegUSGraph  𝑚  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ¬  𝐺  RegUSGraph  𝑚 )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 46 | 36 45 | mpbird | ⊢ ( ( ( ( ( 𝑡  ∈  𝑉  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 )  =  𝑚 )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) ) )  ∧  𝑘  =  𝑚 )  →  ( ( ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ¬  𝐺  RegUSGraph  𝑘 )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 47 | 30 46 | rspcimdv | ⊢ ( ( ( ( 𝑡  ∈  𝑉  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 )  =  𝑚 )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) ) )  →  ( ∀ 𝑘  ∈  ℕ0 ( ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ¬  𝐺  RegUSGraph  𝑘 )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 48 | 47 | com12 | ⊢ ( ∀ 𝑘  ∈  ℕ0 ( ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ¬  𝐺  RegUSGraph  𝑘 )  →  ( ( ( ( 𝑡  ∈  𝑉  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 )  =  𝑚 )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) ) )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 49 | 29 48 | sylbir | ⊢ ( ( ∀ 𝑘  ∈  ℕ0 ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ∀ 𝑘  ∈  ℕ0 ¬  𝐺  RegUSGraph  𝑘 )  →  ( ( ( ( 𝑡  ∈  𝑉  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 )  =  𝑚 )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) ) )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 50 | 49 | expcom | ⊢ ( ∀ 𝑘  ∈  ℕ0 ¬  𝐺  RegUSGraph  𝑘  →  ( ∀ 𝑘  ∈  ℕ0 ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( ( ( ( 𝑡  ∈  𝑉  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 )  =  𝑚 )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) ) )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 51 | 50 | com13 | ⊢ ( ( ( ( 𝑡  ∈  𝑉  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 )  =  𝑚 )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) ) )  →  ( ∀ 𝑘  ∈  ℕ0 ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( ∀ 𝑘  ∈  ℕ0 ¬  𝐺  RegUSGraph  𝑘  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 52 | 51 | exp31 | ⊢ ( ( 𝑡  ∈  𝑉  ∧  𝑚  ∈  ℕ0 )  →  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 )  =  𝑚  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ( ∀ 𝑘  ∈  ℕ0 ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( ∀ 𝑘  ∈  ℕ0 ¬  𝐺  RegUSGraph  𝑘  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) ) | 
						
							| 53 | 52 | rexlimivv | ⊢ ( ∃ 𝑡  ∈  𝑉 ∃ 𝑚  ∈  ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 )  =  𝑚  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ( ∀ 𝑘  ∈  ℕ0 ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( ∀ 𝑘  ∈  ℕ0 ¬  𝐺  RegUSGraph  𝑘  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 54 | 28 53 | mpcom | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ( ∀ 𝑘  ∈  ℕ0 ( ∃ 𝑢  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( ∀ 𝑘  ∈  ℕ0 ¬  𝐺  RegUSGraph  𝑘  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 55 | 4 5 54 | mp2d | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) |