| Step | Hyp | Ref | Expression | 
						
							| 1 |  | friendship.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | simpr1 | ⊢ ( ( 3  <  ( ♯ ‘ 𝑉 )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑉  ≠  ∅  ∧  𝑉  ∈  Fin ) )  →  𝐺  ∈   FriendGraph  ) | 
						
							| 3 |  | simpr3 | ⊢ ( ( 3  <  ( ♯ ‘ 𝑉 )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑉  ≠  ∅  ∧  𝑉  ∈  Fin ) )  →  𝑉  ∈  Fin ) | 
						
							| 4 |  | simpl | ⊢ ( ( 3  <  ( ♯ ‘ 𝑉 )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑉  ≠  ∅  ∧  𝑉  ∈  Fin ) )  →  3  <  ( ♯ ‘ 𝑉 ) ) | 
						
							| 5 | 1 | friendshipgt3 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  3  <  ( ♯ ‘ 𝑉 ) )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 6 | 2 3 4 5 | syl3anc | ⊢ ( ( 3  <  ( ♯ ‘ 𝑉 )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑉  ≠  ∅  ∧  𝑉  ∈  Fin ) )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 7 | 6 | ex | ⊢ ( 3  <  ( ♯ ‘ 𝑉 )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ≠  ∅  ∧  𝑉  ∈  Fin )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 8 |  | hashcl | ⊢ ( 𝑉  ∈  Fin  →  ( ♯ ‘ 𝑉 )  ∈  ℕ0 ) | 
						
							| 9 |  | simplr | ⊢ ( ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  𝑉  ∈  Fin )  ∧  ( ¬  3  <  ( ♯ ‘ 𝑉 )  ∧  𝑉  ≠  ∅ ) )  →  𝑉  ∈  Fin ) | 
						
							| 10 |  | hashge1 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  1  ≤  ( ♯ ‘ 𝑉 ) ) | 
						
							| 11 | 10 | ad2ant2l | ⊢ ( ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  𝑉  ∈  Fin )  ∧  ( ¬  3  <  ( ♯ ‘ 𝑉 )  ∧  𝑉  ≠  ∅ ) )  →  1  ≤  ( ♯ ‘ 𝑉 ) ) | 
						
							| 12 |  | nn0re | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( ♯ ‘ 𝑉 )  ∈  ℝ ) | 
						
							| 13 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 14 |  | lenlt | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℝ  ∧  3  ∈  ℝ )  →  ( ( ♯ ‘ 𝑉 )  ≤  3  ↔  ¬  3  <  ( ♯ ‘ 𝑉 ) ) ) | 
						
							| 15 | 12 13 14 | sylancl | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑉 )  ≤  3  ↔  ¬  3  <  ( ♯ ‘ 𝑉 ) ) ) | 
						
							| 16 | 15 | biimprd | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( ¬  3  <  ( ♯ ‘ 𝑉 )  →  ( ♯ ‘ 𝑉 )  ≤  3 ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  𝑉  ∈  Fin )  →  ( ¬  3  <  ( ♯ ‘ 𝑉 )  →  ( ♯ ‘ 𝑉 )  ≤  3 ) ) | 
						
							| 18 | 17 | com12 | ⊢ ( ¬  3  <  ( ♯ ‘ 𝑉 )  →  ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  𝑉  ∈  Fin )  →  ( ♯ ‘ 𝑉 )  ≤  3 ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ¬  3  <  ( ♯ ‘ 𝑉 )  ∧  𝑉  ≠  ∅ )  →  ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  𝑉  ∈  Fin )  →  ( ♯ ‘ 𝑉 )  ≤  3 ) ) | 
						
							| 20 | 19 | impcom | ⊢ ( ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  𝑉  ∈  Fin )  ∧  ( ¬  3  <  ( ♯ ‘ 𝑉 )  ∧  𝑉  ≠  ∅ ) )  →  ( ♯ ‘ 𝑉 )  ≤  3 ) | 
						
							| 21 | 9 11 20 | 3jca | ⊢ ( ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  𝑉  ∈  Fin )  ∧  ( ¬  3  <  ( ♯ ‘ 𝑉 )  ∧  𝑉  ≠  ∅ ) )  →  ( 𝑉  ∈  Fin  ∧  1  ≤  ( ♯ ‘ 𝑉 )  ∧  ( ♯ ‘ 𝑉 )  ≤  3 ) ) | 
						
							| 22 | 21 | exp31 | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( 𝑉  ∈  Fin  →  ( ( ¬  3  <  ( ♯ ‘ 𝑉 )  ∧  𝑉  ≠  ∅ )  →  ( 𝑉  ∈  Fin  ∧  1  ≤  ( ♯ ‘ 𝑉 )  ∧  ( ♯ ‘ 𝑉 )  ≤  3 ) ) ) ) | 
						
							| 23 | 8 22 | mpcom | ⊢ ( 𝑉  ∈  Fin  →  ( ( ¬  3  <  ( ♯ ‘ 𝑉 )  ∧  𝑉  ≠  ∅ )  →  ( 𝑉  ∈  Fin  ∧  1  ≤  ( ♯ ‘ 𝑉 )  ∧  ( ♯ ‘ 𝑉 )  ≤  3 ) ) ) | 
						
							| 24 | 23 | impcom | ⊢ ( ( ( ¬  3  <  ( ♯ ‘ 𝑉 )  ∧  𝑉  ≠  ∅ )  ∧  𝑉  ∈  Fin )  →  ( 𝑉  ∈  Fin  ∧  1  ≤  ( ♯ ‘ 𝑉 )  ∧  ( ♯ ‘ 𝑉 )  ≤  3 ) ) | 
						
							| 25 |  | hash1to3 | ⊢ ( ( 𝑉  ∈  Fin  ∧  1  ≤  ( ♯ ‘ 𝑉 )  ∧  ( ♯ ‘ 𝑉 )  ≤  3 )  →  ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( 𝑉  =  { 𝑎 }  ∨  𝑉  =  { 𝑎 ,  𝑏 }  ∨  𝑉  =  { 𝑎 ,  𝑏 ,  𝑐 } ) ) | 
						
							| 26 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 27 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 28 | 1 27 | 1to3vfriendship | ⊢ ( ( 𝑎  ∈  V  ∧  ( 𝑉  =  { 𝑎 }  ∨  𝑉  =  { 𝑎 ,  𝑏 }  ∨  𝑉  =  { 𝑎 ,  𝑏 ,  𝑐 } ) )  →  ( 𝐺  ∈   FriendGraph   →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 29 | 26 28 | mpan | ⊢ ( ( 𝑉  =  { 𝑎 }  ∨  𝑉  =  { 𝑎 ,  𝑏 }  ∨  𝑉  =  { 𝑎 ,  𝑏 ,  𝑐 } )  →  ( 𝐺  ∈   FriendGraph   →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 30 | 29 | exlimiv | ⊢ ( ∃ 𝑐 ( 𝑉  =  { 𝑎 }  ∨  𝑉  =  { 𝑎 ,  𝑏 }  ∨  𝑉  =  { 𝑎 ,  𝑏 ,  𝑐 } )  →  ( 𝐺  ∈   FriendGraph   →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 31 | 30 | exlimivv | ⊢ ( ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( 𝑉  =  { 𝑎 }  ∨  𝑉  =  { 𝑎 ,  𝑏 }  ∨  𝑉  =  { 𝑎 ,  𝑏 ,  𝑐 } )  →  ( 𝐺  ∈   FriendGraph   →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 32 | 24 25 31 | 3syl | ⊢ ( ( ( ¬  3  <  ( ♯ ‘ 𝑉 )  ∧  𝑉  ≠  ∅ )  ∧  𝑉  ∈  Fin )  →  ( 𝐺  ∈   FriendGraph   →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 33 | 32 | exp31 | ⊢ ( ¬  3  <  ( ♯ ‘ 𝑉 )  →  ( 𝑉  ≠  ∅  →  ( 𝑉  ∈  Fin  →  ( 𝐺  ∈   FriendGraph   →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 34 | 33 | com14 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ≠  ∅  →  ( 𝑉  ∈  Fin  →  ( ¬  3  <  ( ♯ ‘ 𝑉 )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 35 | 34 | 3imp | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ≠  ∅  ∧  𝑉  ∈  Fin )  →  ( ¬  3  <  ( ♯ ‘ 𝑉 )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 36 | 35 | com12 | ⊢ ( ¬  3  <  ( ♯ ‘ 𝑉 )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ≠  ∅  ∧  𝑉  ∈  Fin )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 37 | 7 36 | pm2.61i | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ≠  ∅  ∧  𝑉  ∈  Fin )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  ( Edg ‘ 𝐺 ) ) |