Metamath Proof Explorer


Theorem friendship

Description: The friendship theorem: In every finite (nonempty) friendship graph there is a vertex which is adjacent to all other vertices. This is Metamath 100 proof #83. (Contributed by Alexander van der Vekens, 9-Oct-2018)

Ref Expression
Hypothesis friendship.v V = Vtx G
Assertion friendship G FriendGraph V V Fin v V w V v v w Edg G

Proof

Step Hyp Ref Expression
1 friendship.v V = Vtx G
2 simpr1 3 < V G FriendGraph V V Fin G FriendGraph
3 simpr3 3 < V G FriendGraph V V Fin V Fin
4 simpl 3 < V G FriendGraph V V Fin 3 < V
5 1 friendshipgt3 G FriendGraph V Fin 3 < V v V w V v v w Edg G
6 2 3 4 5 syl3anc 3 < V G FriendGraph V V Fin v V w V v v w Edg G
7 6 ex 3 < V G FriendGraph V V Fin v V w V v v w Edg G
8 hashcl V Fin V 0
9 simplr V 0 V Fin ¬ 3 < V V V Fin
10 hashge1 V Fin V 1 V
11 10 ad2ant2l V 0 V Fin ¬ 3 < V V 1 V
12 nn0re V 0 V
13 3re 3
14 lenlt V 3 V 3 ¬ 3 < V
15 12 13 14 sylancl V 0 V 3 ¬ 3 < V
16 15 biimprd V 0 ¬ 3 < V V 3
17 16 adantr V 0 V Fin ¬ 3 < V V 3
18 17 com12 ¬ 3 < V V 0 V Fin V 3
19 18 adantr ¬ 3 < V V V 0 V Fin V 3
20 19 impcom V 0 V Fin ¬ 3 < V V V 3
21 9 11 20 3jca V 0 V Fin ¬ 3 < V V V Fin 1 V V 3
22 21 exp31 V 0 V Fin ¬ 3 < V V V Fin 1 V V 3
23 8 22 mpcom V Fin ¬ 3 < V V V Fin 1 V V 3
24 23 impcom ¬ 3 < V V V Fin V Fin 1 V V 3
25 hash1to3 V Fin 1 V V 3 a b c V = a V = a b V = a b c
26 vex a V
27 eqid Edg G = Edg G
28 1 27 1to3vfriendship a V V = a V = a b V = a b c G FriendGraph v V w V v v w Edg G
29 26 28 mpan V = a V = a b V = a b c G FriendGraph v V w V v v w Edg G
30 29 exlimiv c V = a V = a b V = a b c G FriendGraph v V w V v v w Edg G
31 30 exlimivv a b c V = a V = a b V = a b c G FriendGraph v V w V v v w Edg G
32 24 25 31 3syl ¬ 3 < V V V Fin G FriendGraph v V w V v v w Edg G
33 32 exp31 ¬ 3 < V V V Fin G FriendGraph v V w V v v w Edg G
34 33 com14 G FriendGraph V V Fin ¬ 3 < V v V w V v v w Edg G
35 34 3imp G FriendGraph V V Fin ¬ 3 < V v V w V v v w Edg G
36 35 com12 ¬ 3 < V G FriendGraph V V Fin v V w V v v w Edg G
37 7 36 pm2.61i G FriendGraph V V Fin v V w V v v w Edg G