Metamath Proof Explorer


Theorem 1to3vfriendship

Description: The friendship theorem for small graphs: In every friendship graph with one, two or three vertices, there is a vertex which is adjacent to all other vertices. (Contributed by Alexander van der Vekens, 6-Oct-2017) (Revised by AV, 31-Mar-2021)

Ref Expression
Hypotheses 3vfriswmgr.v 𝑉 = ( Vtx ‘ 𝐺 )
3vfriswmgr.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion 1to3vfriendship ( ( 𝐴𝑋 ∧ ( 𝑉 = { 𝐴 } ∨ 𝑉 = { 𝐴 , 𝐵 } ∨ 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) ) → ( 𝐺 ∈ FriendGraph → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) )

Proof

Step Hyp Ref Expression
1 3vfriswmgr.v 𝑉 = ( Vtx ‘ 𝐺 )
2 3vfriswmgr.e 𝐸 = ( Edg ‘ 𝐺 )
3 1 2 1to3vfriswmgr ( ( 𝐴𝑋 ∧ ( 𝑉 = { 𝐴 } ∨ 𝑉 = { 𝐴 , 𝐵 } ∨ 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) ) → ( 𝐺 ∈ FriendGraph → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) ( { 𝑤 , 𝑣 } ∈ 𝐸 ∧ ∃! 𝑥 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑤 , 𝑥 } ∈ 𝐸 ) ) )
4 prcom { 𝑤 , 𝑣 } = { 𝑣 , 𝑤 }
5 4 eleq1i ( { 𝑤 , 𝑣 } ∈ 𝐸 ↔ { 𝑣 , 𝑤 } ∈ 𝐸 )
6 5 biimpi ( { 𝑤 , 𝑣 } ∈ 𝐸 → { 𝑣 , 𝑤 } ∈ 𝐸 )
7 6 adantr ( ( { 𝑤 , 𝑣 } ∈ 𝐸 ∧ ∃! 𝑥 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑤 , 𝑥 } ∈ 𝐸 ) → { 𝑣 , 𝑤 } ∈ 𝐸 )
8 7 ralimi ( ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) ( { 𝑤 , 𝑣 } ∈ 𝐸 ∧ ∃! 𝑥 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑤 , 𝑥 } ∈ 𝐸 ) → ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 )
9 8 reximi ( ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) ( { 𝑤 , 𝑣 } ∈ 𝐸 ∧ ∃! 𝑥 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑤 , 𝑥 } ∈ 𝐸 ) → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 )
10 3 9 syl6 ( ( 𝐴𝑋 ∧ ( 𝑉 = { 𝐴 } ∨ 𝑉 = { 𝐴 , 𝐵 } ∨ 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) ) → ( 𝐺 ∈ FriendGraph → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) )