Step |
Hyp |
Ref |
Expression |
1 |
|
3vfriswmgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
3vfriswmgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
1to3vfriswmgr |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑉 = { 𝐴 } ∨ 𝑉 = { 𝐴 , 𝐵 } ∨ 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) ) → ( 𝐺 ∈ FriendGraph → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) ( { 𝑤 , 𝑣 } ∈ 𝐸 ∧ ∃! 𝑥 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑤 , 𝑥 } ∈ 𝐸 ) ) ) |
4 |
|
prcom |
⊢ { 𝑤 , 𝑣 } = { 𝑣 , 𝑤 } |
5 |
4
|
eleq1i |
⊢ ( { 𝑤 , 𝑣 } ∈ 𝐸 ↔ { 𝑣 , 𝑤 } ∈ 𝐸 ) |
6 |
5
|
biimpi |
⊢ ( { 𝑤 , 𝑣 } ∈ 𝐸 → { 𝑣 , 𝑤 } ∈ 𝐸 ) |
7 |
6
|
adantr |
⊢ ( ( { 𝑤 , 𝑣 } ∈ 𝐸 ∧ ∃! 𝑥 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑤 , 𝑥 } ∈ 𝐸 ) → { 𝑣 , 𝑤 } ∈ 𝐸 ) |
8 |
7
|
ralimi |
⊢ ( ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) ( { 𝑤 , 𝑣 } ∈ 𝐸 ∧ ∃! 𝑥 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑤 , 𝑥 } ∈ 𝐸 ) → ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) |
9 |
8
|
reximi |
⊢ ( ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) ( { 𝑤 , 𝑣 } ∈ 𝐸 ∧ ∃! 𝑥 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑤 , 𝑥 } ∈ 𝐸 ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) |
10 |
3 9
|
syl6 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑉 = { 𝐴 } ∨ 𝑉 = { 𝐴 , 𝐵 } ∨ 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) ) → ( 𝐺 ∈ FriendGraph → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) |