| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3vfriswmgr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | 3vfriswmgr.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | 1to3vfriswmgr | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( 𝑉  =  { 𝐴 }  ∨  𝑉  =  { 𝐴 ,  𝐵 }  ∨  𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 } ) )  →  ( 𝐺  ∈   FriendGraph   →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) ( { 𝑤 ,  𝑣 }  ∈  𝐸  ∧  ∃! 𝑥  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑤 ,  𝑥 }  ∈  𝐸 ) ) ) | 
						
							| 4 |  | prcom | ⊢ { 𝑤 ,  𝑣 }  =  { 𝑣 ,  𝑤 } | 
						
							| 5 | 4 | eleq1i | ⊢ ( { 𝑤 ,  𝑣 }  ∈  𝐸  ↔  { 𝑣 ,  𝑤 }  ∈  𝐸 ) | 
						
							| 6 | 5 | biimpi | ⊢ ( { 𝑤 ,  𝑣 }  ∈  𝐸  →  { 𝑣 ,  𝑤 }  ∈  𝐸 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( { 𝑤 ,  𝑣 }  ∈  𝐸  ∧  ∃! 𝑥  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑤 ,  𝑥 }  ∈  𝐸 )  →  { 𝑣 ,  𝑤 }  ∈  𝐸 ) | 
						
							| 8 | 7 | ralimi | ⊢ ( ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) ( { 𝑤 ,  𝑣 }  ∈  𝐸  ∧  ∃! 𝑥  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑤 ,  𝑥 }  ∈  𝐸 )  →  ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) | 
						
							| 9 | 8 | reximi | ⊢ ( ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) ( { 𝑤 ,  𝑣 }  ∈  𝐸  ∧  ∃! 𝑥  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑤 ,  𝑥 }  ∈  𝐸 )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) | 
						
							| 10 | 3 9 | syl6 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( 𝑉  =  { 𝐴 }  ∨  𝑉  =  { 𝐴 ,  𝐵 }  ∨  𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 } ) )  →  ( 𝐺  ∈   FriendGraph   →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) |