| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3vfriswmgr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | 3vfriswmgr.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | df-3or | ⊢ ( ( 𝑉  =  { 𝐴 }  ∨  𝑉  =  { 𝐴 ,  𝐵 }  ∨  𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 } )  ↔  ( ( 𝑉  =  { 𝐴 }  ∨  𝑉  =  { 𝐴 ,  𝐵 } )  ∨  𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 } ) ) | 
						
							| 4 | 1 2 | 1to2vfriswmgr | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( 𝑉  =  { 𝐴 }  ∨  𝑉  =  { 𝐴 ,  𝐵 } ) )  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 5 | 4 | expcom | ⊢ ( ( 𝑉  =  { 𝐴 }  ∨  𝑉  =  { 𝐴 ,  𝐵 } )  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) | 
						
							| 6 |  | tppreq3 | ⊢ ( 𝐵  =  𝐶  →  { 𝐴 ,  𝐵 ,  𝐶 }  =  { 𝐴 ,  𝐵 } ) | 
						
							| 7 | 6 | eqeq2d | ⊢ ( 𝐵  =  𝐶  →  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ↔  𝑉  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 8 |  | olc | ⊢ ( 𝑉  =  { 𝐴 ,  𝐵 }  →  ( 𝑉  =  { 𝐴 }  ∨  𝑉  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 9 | 8 | anim1ci | ⊢ ( ( 𝑉  =  { 𝐴 ,  𝐵 }  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ∈  𝑋  ∧  ( 𝑉  =  { 𝐴 }  ∨  𝑉  =  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 10 | 9 4 | syl | ⊢ ( ( 𝑉  =  { 𝐴 ,  𝐵 }  ∧  𝐴  ∈  𝑋 )  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 11 | 10 | ex | ⊢ ( 𝑉  =  { 𝐴 ,  𝐵 }  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) | 
						
							| 12 | 7 11 | biimtrdi | ⊢ ( 𝐵  =  𝐶  →  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) ) | 
						
							| 13 |  | tpprceq3 | ⊢ ( ¬  ( 𝐵  ∈  V  ∧  𝐵  ≠  𝐴 )  →  { 𝐶 ,  𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐴 } ) | 
						
							| 14 |  | tprot | ⊢ { 𝐶 ,  𝐴 ,  𝐵 }  =  { 𝐴 ,  𝐵 ,  𝐶 } | 
						
							| 15 | 14 | eqeq1i | ⊢ ( { 𝐶 ,  𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐴 }  ↔  { 𝐴 ,  𝐵 ,  𝐶 }  =  { 𝐶 ,  𝐴 } ) | 
						
							| 16 | 15 | biimpi | ⊢ ( { 𝐶 ,  𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐴 }  →  { 𝐴 ,  𝐵 ,  𝐶 }  =  { 𝐶 ,  𝐴 } ) | 
						
							| 17 |  | prcom | ⊢ { 𝐶 ,  𝐴 }  =  { 𝐴 ,  𝐶 } | 
						
							| 18 | 16 17 | eqtrdi | ⊢ ( { 𝐶 ,  𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐴 }  →  { 𝐴 ,  𝐵 ,  𝐶 }  =  { 𝐴 ,  𝐶 } ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( { 𝐶 ,  𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐴 }  →  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ↔  𝑉  =  { 𝐴 ,  𝐶 } ) ) | 
						
							| 20 |  | olc | ⊢ ( 𝑉  =  { 𝐴 ,  𝐶 }  →  ( 𝑉  =  { 𝐴 }  ∨  𝑉  =  { 𝐴 ,  𝐶 } ) ) | 
						
							| 21 | 1 2 | 1to2vfriswmgr | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( 𝑉  =  { 𝐴 }  ∨  𝑉  =  { 𝐴 ,  𝐶 } ) )  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 22 | 20 21 | sylan2 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝑉  =  { 𝐴 ,  𝐶 } )  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 23 | 22 | expcom | ⊢ ( 𝑉  =  { 𝐴 ,  𝐶 }  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) | 
						
							| 24 | 19 23 | biimtrdi | ⊢ ( { 𝐶 ,  𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐴 }  →  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) ) | 
						
							| 25 | 13 24 | syl | ⊢ ( ¬  ( 𝐵  ∈  V  ∧  𝐵  ≠  𝐴 )  →  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) ) | 
						
							| 26 | 25 | a1d | ⊢ ( ¬  ( 𝐵  ∈  V  ∧  𝐵  ≠  𝐴 )  →  ( 𝐵  ≠  𝐶  →  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) ) ) | 
						
							| 27 |  | tpprceq3 | ⊢ ( ¬  ( 𝐶  ∈  V  ∧  𝐶  ≠  𝐴 )  →  { 𝐵 ,  𝐴 ,  𝐶 }  =  { 𝐵 ,  𝐴 } ) | 
						
							| 28 |  | tpcoma | ⊢ { 𝐵 ,  𝐴 ,  𝐶 }  =  { 𝐴 ,  𝐵 ,  𝐶 } | 
						
							| 29 | 28 | eqeq1i | ⊢ ( { 𝐵 ,  𝐴 ,  𝐶 }  =  { 𝐵 ,  𝐴 }  ↔  { 𝐴 ,  𝐵 ,  𝐶 }  =  { 𝐵 ,  𝐴 } ) | 
						
							| 30 | 29 | biimpi | ⊢ ( { 𝐵 ,  𝐴 ,  𝐶 }  =  { 𝐵 ,  𝐴 }  →  { 𝐴 ,  𝐵 ,  𝐶 }  =  { 𝐵 ,  𝐴 } ) | 
						
							| 31 |  | prcom | ⊢ { 𝐵 ,  𝐴 }  =  { 𝐴 ,  𝐵 } | 
						
							| 32 | 30 31 | eqtrdi | ⊢ ( { 𝐵 ,  𝐴 ,  𝐶 }  =  { 𝐵 ,  𝐴 }  →  { 𝐴 ,  𝐵 ,  𝐶 }  =  { 𝐴 ,  𝐵 } ) | 
						
							| 33 | 32 | eqeq2d | ⊢ ( { 𝐵 ,  𝐴 ,  𝐶 }  =  { 𝐵 ,  𝐴 }  →  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ↔  𝑉  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 34 | 8 4 | sylan2 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝑉  =  { 𝐴 ,  𝐵 } )  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 35 | 34 | expcom | ⊢ ( 𝑉  =  { 𝐴 ,  𝐵 }  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) | 
						
							| 36 | 35 | a1d | ⊢ ( 𝑉  =  { 𝐴 ,  𝐵 }  →  ( 𝐵  ≠  𝐶  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) ) | 
						
							| 37 | 33 36 | biimtrdi | ⊢ ( { 𝐵 ,  𝐴 ,  𝐶 }  =  { 𝐵 ,  𝐴 }  →  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( 𝐵  ≠  𝐶  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) ) ) | 
						
							| 38 | 27 37 | syl | ⊢ ( ¬  ( 𝐶  ∈  V  ∧  𝐶  ≠  𝐴 )  →  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( 𝐵  ≠  𝐶  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) ) ) | 
						
							| 39 | 38 | com23 | ⊢ ( ¬  ( 𝐶  ∈  V  ∧  𝐶  ≠  𝐴 )  →  ( 𝐵  ≠  𝐶  →  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) ) ) | 
						
							| 40 |  | simpl | ⊢ ( ( 𝐵  ∈  V  ∧  𝐵  ≠  𝐴 )  →  𝐵  ∈  V ) | 
						
							| 41 |  | simpl | ⊢ ( ( 𝐶  ∈  V  ∧  𝐶  ≠  𝐴 )  →  𝐶  ∈  V ) | 
						
							| 42 | 40 41 | anim12i | ⊢ ( ( ( 𝐵  ∈  V  ∧  𝐵  ≠  𝐴 )  ∧  ( 𝐶  ∈  V  ∧  𝐶  ≠  𝐴 ) )  →  ( 𝐵  ∈  V  ∧  𝐶  ∈  V ) ) | 
						
							| 43 | 42 | ad2antrr | ⊢ ( ( ( ( ( 𝐵  ∈  V  ∧  𝐵  ≠  𝐴 )  ∧  ( 𝐶  ∈  V  ∧  𝐶  ≠  𝐴 ) )  ∧  𝐵  ≠  𝐶 )  ∧  𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 } )  →  ( 𝐵  ∈  V  ∧  𝐶  ∈  V ) ) | 
						
							| 44 | 43 | anim1ci | ⊢ ( ( ( ( ( ( 𝐵  ∈  V  ∧  𝐵  ≠  𝐴 )  ∧  ( 𝐶  ∈  V  ∧  𝐶  ≠  𝐴 ) )  ∧  𝐵  ≠  𝐶 )  ∧  𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 } )  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ∈  𝑋  ∧  ( 𝐵  ∈  V  ∧  𝐶  ∈  V ) ) ) | 
						
							| 45 |  | 3anass | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  V  ∧  𝐶  ∈  V )  ↔  ( 𝐴  ∈  𝑋  ∧  ( 𝐵  ∈  V  ∧  𝐶  ∈  V ) ) ) | 
						
							| 46 | 44 45 | sylibr | ⊢ ( ( ( ( ( ( 𝐵  ∈  V  ∧  𝐵  ≠  𝐴 )  ∧  ( 𝐶  ∈  V  ∧  𝐶  ≠  𝐴 ) )  ∧  𝐵  ≠  𝐶 )  ∧  𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 } )  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  V  ∧  𝐶  ∈  V ) ) | 
						
							| 47 |  | simpr | ⊢ ( ( 𝐵  ∈  V  ∧  𝐵  ≠  𝐴 )  →  𝐵  ≠  𝐴 ) | 
						
							| 48 | 47 | necomd | ⊢ ( ( 𝐵  ∈  V  ∧  𝐵  ≠  𝐴 )  →  𝐴  ≠  𝐵 ) | 
						
							| 49 |  | simpr | ⊢ ( ( 𝐶  ∈  V  ∧  𝐶  ≠  𝐴 )  →  𝐶  ≠  𝐴 ) | 
						
							| 50 | 49 | necomd | ⊢ ( ( 𝐶  ∈  V  ∧  𝐶  ≠  𝐴 )  →  𝐴  ≠  𝐶 ) | 
						
							| 51 | 48 50 | anim12i | ⊢ ( ( ( 𝐵  ∈  V  ∧  𝐵  ≠  𝐴 )  ∧  ( 𝐶  ∈  V  ∧  𝐶  ≠  𝐴 ) )  →  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶 ) ) | 
						
							| 52 | 51 | anim1i | ⊢ ( ( ( ( 𝐵  ∈  V  ∧  𝐵  ≠  𝐴 )  ∧  ( 𝐶  ∈  V  ∧  𝐶  ≠  𝐴 ) )  ∧  𝐵  ≠  𝐶 )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶 )  ∧  𝐵  ≠  𝐶 ) ) | 
						
							| 53 |  | df-3an | ⊢ ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ↔  ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶 )  ∧  𝐵  ≠  𝐶 ) ) | 
						
							| 54 | 52 53 | sylibr | ⊢ ( ( ( ( 𝐵  ∈  V  ∧  𝐵  ≠  𝐴 )  ∧  ( 𝐶  ∈  V  ∧  𝐶  ≠  𝐴 ) )  ∧  𝐵  ≠  𝐶 )  →  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) ) | 
						
							| 55 | 54 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐵  ∈  V  ∧  𝐵  ≠  𝐴 )  ∧  ( 𝐶  ∈  V  ∧  𝐶  ≠  𝐴 ) )  ∧  𝐵  ≠  𝐶 )  ∧  𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 } )  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) ) | 
						
							| 56 |  | simplr | ⊢ ( ( ( ( ( ( 𝐵  ∈  V  ∧  𝐵  ≠  𝐴 )  ∧  ( 𝐶  ∈  V  ∧  𝐶  ≠  𝐴 ) )  ∧  𝐵  ≠  𝐶 )  ∧  𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 } )  ∧  𝐴  ∈  𝑋 )  →  𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 } ) | 
						
							| 57 | 1 2 | 3vfriswmgr | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  V  ∧  𝐶  ∈  V )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 } )  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 58 | 46 55 56 57 | syl3anc | ⊢ ( ( ( ( ( ( 𝐵  ∈  V  ∧  𝐵  ≠  𝐴 )  ∧  ( 𝐶  ∈  V  ∧  𝐶  ≠  𝐴 ) )  ∧  𝐵  ≠  𝐶 )  ∧  𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 } )  ∧  𝐴  ∈  𝑋 )  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 59 | 58 | exp41 | ⊢ ( ( ( 𝐵  ∈  V  ∧  𝐵  ≠  𝐴 )  ∧  ( 𝐶  ∈  V  ∧  𝐶  ≠  𝐴 ) )  →  ( 𝐵  ≠  𝐶  →  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) ) ) | 
						
							| 60 | 26 39 59 | ecase | ⊢ ( 𝐵  ≠  𝐶  →  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) ) | 
						
							| 61 | 12 60 | pm2.61ine | ⊢ ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) | 
						
							| 62 | 5 61 | jaoi | ⊢ ( ( ( 𝑉  =  { 𝐴 }  ∨  𝑉  =  { 𝐴 ,  𝐵 } )  ∨  𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 } )  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) | 
						
							| 63 | 3 62 | sylbi | ⊢ ( ( 𝑉  =  { 𝐴 }  ∨  𝑉  =  { 𝐴 ,  𝐵 }  ∨  𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 } )  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) | 
						
							| 64 | 63 | impcom | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( 𝑉  =  { 𝐴 }  ∨  𝑉  =  { 𝐴 ,  𝐵 }  ∨  𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 } ) )  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) |