| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3vfriswmgr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | 3vfriswmgr.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | 1vwmgr | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝑉  =  { 𝐴 } )  →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 4 | 3 | a1d | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝑉  =  { 𝐴 } )  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 5 | 4 | expcom | ⊢ ( 𝑉  =  { 𝐴 }  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( 𝐵  ∈  V  ∧  𝐴  ≠  𝐵 )  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  𝑋 ) | 
						
							| 7 |  | simpll | ⊢ ( ( ( 𝐵  ∈  V  ∧  𝐴  ≠  𝐵 )  ∧  𝐴  ∈  𝑋 )  →  𝐵  ∈  V ) | 
						
							| 8 |  | simplr | ⊢ ( ( ( 𝐵  ∈  V  ∧  𝐴  ≠  𝐵 )  ∧  𝐴  ∈  𝑋 )  →  𝐴  ≠  𝐵 ) | 
						
							| 9 | 6 7 8 | 3jca | ⊢ ( ( ( 𝐵  ∈  V  ∧  𝐴  ≠  𝐵 )  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  V  ∧  𝐴  ≠  𝐵 ) ) | 
						
							| 10 | 1 | eqeq1i | ⊢ ( 𝑉  =  { 𝐴 ,  𝐵 }  ↔  ( Vtx ‘ 𝐺 )  =  { 𝐴 ,  𝐵 } ) | 
						
							| 11 | 10 | biimpi | ⊢ ( 𝑉  =  { 𝐴 ,  𝐵 }  →  ( Vtx ‘ 𝐺 )  =  { 𝐴 ,  𝐵 } ) | 
						
							| 12 |  | nfrgr2v | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  V  ∧  𝐴  ≠  𝐵 )  ∧  ( Vtx ‘ 𝐺 )  =  { 𝐴 ,  𝐵 } )  →  𝐺  ∉   FriendGraph  ) | 
						
							| 13 | 9 11 12 | syl2anr | ⊢ ( ( 𝑉  =  { 𝐴 ,  𝐵 }  ∧  ( ( 𝐵  ∈  V  ∧  𝐴  ≠  𝐵 )  ∧  𝐴  ∈  𝑋 ) )  →  𝐺  ∉   FriendGraph  ) | 
						
							| 14 |  | df-nel | ⊢ ( 𝐺  ∉   FriendGraph   ↔  ¬  𝐺  ∈   FriendGraph  ) | 
						
							| 15 | 13 14 | sylib | ⊢ ( ( 𝑉  =  { 𝐴 ,  𝐵 }  ∧  ( ( 𝐵  ∈  V  ∧  𝐴  ≠  𝐵 )  ∧  𝐴  ∈  𝑋 ) )  →  ¬  𝐺  ∈   FriendGraph  ) | 
						
							| 16 | 15 | pm2.21d | ⊢ ( ( 𝑉  =  { 𝐴 ,  𝐵 }  ∧  ( ( 𝐵  ∈  V  ∧  𝐴  ≠  𝐵 )  ∧  𝐴  ∈  𝑋 ) )  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 17 | 16 | expcom | ⊢ ( ( ( 𝐵  ∈  V  ∧  𝐴  ≠  𝐵 )  ∧  𝐴  ∈  𝑋 )  →  ( 𝑉  =  { 𝐴 ,  𝐵 }  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) | 
						
							| 18 | 17 | ex | ⊢ ( ( 𝐵  ∈  V  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴  ∈  𝑋  →  ( 𝑉  =  { 𝐴 ,  𝐵 }  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) ) | 
						
							| 19 | 18 | com23 | ⊢ ( ( 𝐵  ∈  V  ∧  𝐴  ≠  𝐵 )  →  ( 𝑉  =  { 𝐴 ,  𝐵 }  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) ) | 
						
							| 20 |  | ianor | ⊢ ( ¬  ( 𝐵  ∈  V  ∧  𝐴  ≠  𝐵 )  ↔  ( ¬  𝐵  ∈  V  ∨  ¬  𝐴  ≠  𝐵 ) ) | 
						
							| 21 |  | prprc2 | ⊢ ( ¬  𝐵  ∈  V  →  { 𝐴 ,  𝐵 }  =  { 𝐴 } ) | 
						
							| 22 |  | nne | ⊢ ( ¬  𝐴  ≠  𝐵  ↔  𝐴  =  𝐵 ) | 
						
							| 23 |  | preq2 | ⊢ ( 𝐵  =  𝐴  →  { 𝐴 ,  𝐵 }  =  { 𝐴 ,  𝐴 } ) | 
						
							| 24 | 23 | eqcoms | ⊢ ( 𝐴  =  𝐵  →  { 𝐴 ,  𝐵 }  =  { 𝐴 ,  𝐴 } ) | 
						
							| 25 |  | dfsn2 | ⊢ { 𝐴 }  =  { 𝐴 ,  𝐴 } | 
						
							| 26 | 24 25 | eqtr4di | ⊢ ( 𝐴  =  𝐵  →  { 𝐴 ,  𝐵 }  =  { 𝐴 } ) | 
						
							| 27 | 22 26 | sylbi | ⊢ ( ¬  𝐴  ≠  𝐵  →  { 𝐴 ,  𝐵 }  =  { 𝐴 } ) | 
						
							| 28 | 21 27 | jaoi | ⊢ ( ( ¬  𝐵  ∈  V  ∨  ¬  𝐴  ≠  𝐵 )  →  { 𝐴 ,  𝐵 }  =  { 𝐴 } ) | 
						
							| 29 | 20 28 | sylbi | ⊢ ( ¬  ( 𝐵  ∈  V  ∧  𝐴  ≠  𝐵 )  →  { 𝐴 ,  𝐵 }  =  { 𝐴 } ) | 
						
							| 30 | 29 | eqeq2d | ⊢ ( ¬  ( 𝐵  ∈  V  ∧  𝐴  ≠  𝐵 )  →  ( 𝑉  =  { 𝐴 ,  𝐵 }  ↔  𝑉  =  { 𝐴 } ) ) | 
						
							| 31 | 30 5 | biimtrdi | ⊢ ( ¬  ( 𝐵  ∈  V  ∧  𝐴  ≠  𝐵 )  →  ( 𝑉  =  { 𝐴 ,  𝐵 }  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) ) | 
						
							| 32 | 19 31 | pm2.61i | ⊢ ( 𝑉  =  { 𝐴 ,  𝐵 }  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) | 
						
							| 33 | 5 32 | jaoi | ⊢ ( ( 𝑉  =  { 𝐴 }  ∨  𝑉  =  { 𝐴 ,  𝐵 } )  →  ( 𝐴  ∈  𝑋  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) ) | 
						
							| 34 | 33 | impcom | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( 𝑉  =  { 𝐴 }  ∨  𝑉  =  { 𝐴 ,  𝐵 } ) )  →  ( 𝐺  ∈   FriendGraph   →  ∃ ℎ  ∈  𝑉 ∀ 𝑣  ∈  ( 𝑉  ∖  { ℎ } ) ( { 𝑣 ,  ℎ }  ∈  𝐸  ∧  ∃! 𝑤  ∈  ( 𝑉  ∖  { ℎ } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) |