Metamath Proof Explorer


Theorem frgrogt3nreg

Description: If a finite friendship graph has an order greater than 3, it cannot be k-regular for any k . (Contributed by Alexander van der Vekens, 9-Oct-2018) (Revised by AV, 4-Jun-2021)

Ref Expression
Hypothesis frgrreggt1.v V = Vtx G
Assertion frgrogt3nreg G FriendGraph V Fin 3 < V k 0 ¬ G RegUSGraph k

Proof

Step Hyp Ref Expression
1 frgrreggt1.v V = Vtx G
2 simp1 G FriendGraph V Fin 3 < V G FriendGraph
3 simp2 G FriendGraph V Fin 3 < V V Fin
4 hashcl V Fin V 0
5 0red V 0 0
6 3re 3
7 6 a1i V 0 3
8 nn0re V 0 V
9 5 7 8 3jca V 0 0 3 V
10 9 adantr V 0 3 < V 0 3 V
11 3pos 0 < 3
12 11 a1i V 0 3 < V 0 < 3
13 simpr V 0 3 < V 3 < V
14 lttr 0 3 V 0 < 3 3 < V 0 < V
15 14 imp 0 3 V 0 < 3 3 < V 0 < V
16 10 12 13 15 syl12anc V 0 3 < V 0 < V
17 16 ex V 0 3 < V 0 < V
18 ltne 0 0 < V V 0
19 5 17 18 syl6an V 0 3 < V V 0
20 hasheq0 V Fin V = 0 V =
21 20 necon3bid V Fin V 0 V
22 21 biimpcd V 0 V Fin V
23 19 22 syl6 V 0 3 < V V Fin V
24 23 com23 V 0 V Fin 3 < V V
25 4 24 mpcom V Fin 3 < V V
26 25 a1i G FriendGraph V Fin 3 < V V
27 26 3imp G FriendGraph V Fin 3 < V V
28 2 3 27 3jca G FriendGraph V Fin 3 < V G FriendGraph V Fin V
29 28 ad2antrl G RegUSGraph k G FriendGraph V Fin 3 < V k 0 G FriendGraph V Fin V
30 simpl G RegUSGraph k G FriendGraph V Fin 3 < V k 0 G RegUSGraph k
31 1 frgrregord13 G FriendGraph V Fin V G RegUSGraph k V = 1 V = 3
32 29 30 31 syl2anc G RegUSGraph k G FriendGraph V Fin 3 < V k 0 V = 1 V = 3
33 1red V 0 3 < V 1
34 6 a1i V 0 3 < V 3
35 8 adantr V 0 3 < V V
36 1lt3 1 < 3
37 36 a1i V 0 3 < V 1 < 3
38 33 34 35 37 13 lttrd V 0 3 < V 1 < V
39 33 38 gtned V 0 3 < V V 1
40 eqneqall V = 1 V 1 ¬ G RegUSGraph k
41 39 40 syl5com V 0 3 < V V = 1 ¬ G RegUSGraph k
42 ltne 3 3 < V V 3
43 7 42 sylan V 0 3 < V V 3
44 eqneqall V = 3 V 3 ¬ G RegUSGraph k
45 43 44 syl5com V 0 3 < V V = 3 ¬ G RegUSGraph k
46 41 45 jaod V 0 3 < V V = 1 V = 3 ¬ G RegUSGraph k
47 46 ex V 0 3 < V V = 1 V = 3 ¬ G RegUSGraph k
48 4 47 syl V Fin 3 < V V = 1 V = 3 ¬ G RegUSGraph k
49 48 a1i G FriendGraph V Fin 3 < V V = 1 V = 3 ¬ G RegUSGraph k
50 49 3imp G FriendGraph V Fin 3 < V V = 1 V = 3 ¬ G RegUSGraph k
51 50 ad2antrl G RegUSGraph k G FriendGraph V Fin 3 < V k 0 V = 1 V = 3 ¬ G RegUSGraph k
52 32 51 mpd G RegUSGraph k G FriendGraph V Fin 3 < V k 0 ¬ G RegUSGraph k
53 52 ex G RegUSGraph k G FriendGraph V Fin 3 < V k 0 ¬ G RegUSGraph k
54 ax-1 ¬ G RegUSGraph k G FriendGraph V Fin 3 < V k 0 ¬ G RegUSGraph k
55 53 54 pm2.61i G FriendGraph V Fin 3 < V k 0 ¬ G RegUSGraph k
56 55 ralrimiva G FriendGraph V Fin 3 < V k 0 ¬ G RegUSGraph k