Metamath Proof Explorer


Theorem nvdir

Description: Distributive law for the scalar product of a complex vector space. (Contributed by NM, 4-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvdi.1 𝑋 = ( BaseSet ‘ 𝑈 )
nvdi.2 𝐺 = ( +𝑣𝑈 )
nvdi.4 𝑆 = ( ·𝑠OLD𝑈 )
Assertion nvdir ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋 ) ) → ( ( 𝐴 + 𝐵 ) 𝑆 𝐶 ) = ( ( 𝐴 𝑆 𝐶 ) 𝐺 ( 𝐵 𝑆 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 nvdi.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nvdi.2 𝐺 = ( +𝑣𝑈 )
3 nvdi.4 𝑆 = ( ·𝑠OLD𝑈 )
4 eqid ( 1st𝑈 ) = ( 1st𝑈 )
5 4 nvvc ( 𝑈 ∈ NrmCVec → ( 1st𝑈 ) ∈ CVecOLD )
6 2 vafval 𝐺 = ( 1st ‘ ( 1st𝑈 ) )
7 3 smfval 𝑆 = ( 2nd ‘ ( 1st𝑈 ) )
8 1 2 bafval 𝑋 = ran 𝐺
9 6 7 8 vcdir ( ( ( 1st𝑈 ) ∈ CVecOLD ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋 ) ) → ( ( 𝐴 + 𝐵 ) 𝑆 𝐶 ) = ( ( 𝐴 𝑆 𝐶 ) 𝐺 ( 𝐵 𝑆 𝐶 ) ) )
10 5 9 sylan ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋 ) ) → ( ( 𝐴 + 𝐵 ) 𝑆 𝐶 ) = ( ( 𝐴 𝑆 𝐶 ) 𝐺 ( 𝐵 𝑆 𝐶 ) ) )