| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odhash.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | odhash.o | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 3 |  | odhash.k | ⊢ 𝐾  =  ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | 
						
							| 4 | 1 2 | odcl | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝐾 ‘ { 𝐴 } )  ∈  Fin )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 6 |  | hashcl | ⊢ ( ( 𝐾 ‘ { 𝐴 } )  ∈  Fin  →  ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) )  ∈  ℕ0 ) | 
						
							| 7 | 6 | nn0red | ⊢ ( ( 𝐾 ‘ { 𝐴 } )  ∈  Fin  →  ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) )  ∈  ℝ ) | 
						
							| 8 |  | pnfnre | ⊢ +∞  ∉  ℝ | 
						
							| 9 | 8 | neli | ⊢ ¬  +∞  ∈  ℝ | 
						
							| 10 | 1 2 3 | odhash | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) )  =  +∞ ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) )  ∈  ℝ  ↔  +∞  ∈  ℝ ) ) | 
						
							| 12 | 9 11 | mtbiri | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ¬  ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) )  ∈  ℝ ) | 
						
							| 13 | 12 | 3expia | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑂 ‘ 𝐴 )  =  0  →  ¬  ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) )  ∈  ℝ ) ) | 
						
							| 14 | 13 | necon2ad | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) )  ∈  ℝ  →  ( 𝑂 ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 15 | 7 14 | syl5 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝐾 ‘ { 𝐴 } )  ∈  Fin  →  ( 𝑂 ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 16 | 15 | 3impia | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝐾 ‘ { 𝐴 } )  ∈  Fin )  →  ( 𝑂 ‘ 𝐴 )  ≠  0 ) | 
						
							| 17 |  | elnnne0 | ⊢ ( ( 𝑂 ‘ 𝐴 )  ∈  ℕ  ↔  ( ( 𝑂 ‘ 𝐴 )  ∈  ℕ0  ∧  ( 𝑂 ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 18 | 5 16 17 | sylanbrc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝐾 ‘ { 𝐴 } )  ∈  Fin )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 19 | 1 2 3 | odhash2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) )  =  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 20 | 18 19 | syld3an3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝐾 ‘ { 𝐴 } )  ∈  Fin )  →  ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) )  =  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 21 | 20 | eqcomd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝐾 ‘ { 𝐴 } )  ∈  Fin )  →  ( 𝑂 ‘ 𝐴 )  =  ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ) |