Metamath Proof Explorer


Theorem om2uzlt2i

Description: The mapping G (see om2uz0i ) preserves order. (Contributed by NM, 4-May-2005) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Hypotheses om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω )
Assertion om2uzlt2i ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴𝐵 ↔ ( 𝐺𝐴 ) < ( 𝐺𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 om2uz.1 𝐶 ∈ ℤ
2 om2uz.2 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω )
3 1 2 om2uzlti ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴𝐵 → ( 𝐺𝐴 ) < ( 𝐺𝐵 ) ) )
4 1 2 om2uzlti ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐵𝐴 → ( 𝐺𝐵 ) < ( 𝐺𝐴 ) ) )
5 fveq2 ( 𝐵 = 𝐴 → ( 𝐺𝐵 ) = ( 𝐺𝐴 ) )
6 5 a1i ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐵 = 𝐴 → ( 𝐺𝐵 ) = ( 𝐺𝐴 ) ) )
7 4 6 orim12d ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( 𝐵𝐴𝐵 = 𝐴 ) → ( ( 𝐺𝐵 ) < ( 𝐺𝐴 ) ∨ ( 𝐺𝐵 ) = ( 𝐺𝐴 ) ) ) )
8 7 ancoms ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐵𝐴𝐵 = 𝐴 ) → ( ( 𝐺𝐵 ) < ( 𝐺𝐴 ) ∨ ( 𝐺𝐵 ) = ( 𝐺𝐴 ) ) ) )
9 nnon ( 𝐵 ∈ ω → 𝐵 ∈ On )
10 nnon ( 𝐴 ∈ ω → 𝐴 ∈ On )
11 onsseleq ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵𝐴 ↔ ( 𝐵𝐴𝐵 = 𝐴 ) ) )
12 ontri1 ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵𝐴 ↔ ¬ 𝐴𝐵 ) )
13 11 12 bitr3d ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐵𝐴𝐵 = 𝐴 ) ↔ ¬ 𝐴𝐵 ) )
14 9 10 13 syl2anr ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐵𝐴𝐵 = 𝐴 ) ↔ ¬ 𝐴𝐵 ) )
15 1 2 om2uzuzi ( 𝐵 ∈ ω → ( 𝐺𝐵 ) ∈ ( ℤ𝐶 ) )
16 eluzelre ( ( 𝐺𝐵 ) ∈ ( ℤ𝐶 ) → ( 𝐺𝐵 ) ∈ ℝ )
17 15 16 syl ( 𝐵 ∈ ω → ( 𝐺𝐵 ) ∈ ℝ )
18 1 2 om2uzuzi ( 𝐴 ∈ ω → ( 𝐺𝐴 ) ∈ ( ℤ𝐶 ) )
19 eluzelre ( ( 𝐺𝐴 ) ∈ ( ℤ𝐶 ) → ( 𝐺𝐴 ) ∈ ℝ )
20 18 19 syl ( 𝐴 ∈ ω → ( 𝐺𝐴 ) ∈ ℝ )
21 leloe ( ( ( 𝐺𝐵 ) ∈ ℝ ∧ ( 𝐺𝐴 ) ∈ ℝ ) → ( ( 𝐺𝐵 ) ≤ ( 𝐺𝐴 ) ↔ ( ( 𝐺𝐵 ) < ( 𝐺𝐴 ) ∨ ( 𝐺𝐵 ) = ( 𝐺𝐴 ) ) ) )
22 lenlt ( ( ( 𝐺𝐵 ) ∈ ℝ ∧ ( 𝐺𝐴 ) ∈ ℝ ) → ( ( 𝐺𝐵 ) ≤ ( 𝐺𝐴 ) ↔ ¬ ( 𝐺𝐴 ) < ( 𝐺𝐵 ) ) )
23 21 22 bitr3d ( ( ( 𝐺𝐵 ) ∈ ℝ ∧ ( 𝐺𝐴 ) ∈ ℝ ) → ( ( ( 𝐺𝐵 ) < ( 𝐺𝐴 ) ∨ ( 𝐺𝐵 ) = ( 𝐺𝐴 ) ) ↔ ¬ ( 𝐺𝐴 ) < ( 𝐺𝐵 ) ) )
24 17 20 23 syl2anr ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( ( 𝐺𝐵 ) < ( 𝐺𝐴 ) ∨ ( 𝐺𝐵 ) = ( 𝐺𝐴 ) ) ↔ ¬ ( 𝐺𝐴 ) < ( 𝐺𝐵 ) ) )
25 8 14 24 3imtr3d ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ¬ 𝐴𝐵 → ¬ ( 𝐺𝐴 ) < ( 𝐺𝐵 ) ) )
26 3 25 impcon4bid ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴𝐵 ↔ ( 𝐺𝐴 ) < ( 𝐺𝐵 ) ) )