Metamath Proof Explorer


Theorem omcan

Description: Left cancellation law for ordinal multiplication. Proposition 8.20 of TakeutiZaring p. 63 and its converse. (Contributed by NM, 14-Dec-2004)

Ref Expression
Assertion omcan ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ 𝐵 = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 omordi ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) )
2 1 ex ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐵𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) )
3 2 ancoms ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐵𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) )
4 3 3adant2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐵𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) )
5 4 imp ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) )
6 omordi ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐶𝐵 → ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) )
7 6 ex ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐶𝐵 → ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) )
8 7 ancoms ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐶𝐵 → ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) )
9 8 3adant3 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐶𝐵 → ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) )
10 9 imp ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐶𝐵 → ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) )
11 5 10 orim12d ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐵𝐶𝐶𝐵 ) → ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) )
12 11 con3d ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ¬ ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) → ¬ ( 𝐵𝐶𝐶𝐵 ) ) )
13 omcl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On )
14 eloni ( ( 𝐴 ·o 𝐵 ) ∈ On → Ord ( 𝐴 ·o 𝐵 ) )
15 13 14 syl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord ( 𝐴 ·o 𝐵 ) )
16 omcl ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ·o 𝐶 ) ∈ On )
17 eloni ( ( 𝐴 ·o 𝐶 ) ∈ On → Ord ( 𝐴 ·o 𝐶 ) )
18 16 17 syl ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → Ord ( 𝐴 ·o 𝐶 ) )
19 ordtri3 ( ( Ord ( 𝐴 ·o 𝐵 ) ∧ Ord ( 𝐴 ·o 𝐶 ) ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ ¬ ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) )
20 15 18 19 syl2an ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ ¬ ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) )
21 20 3impdi ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ ¬ ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) )
22 21 adantr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ ¬ ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) )
23 eloni ( 𝐵 ∈ On → Ord 𝐵 )
24 eloni ( 𝐶 ∈ On → Ord 𝐶 )
25 ordtri3 ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵𝐶𝐶𝐵 ) ) )
26 23 24 25 syl2an ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵𝐶𝐶𝐵 ) ) )
27 26 3adant1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵𝐶𝐶𝐵 ) ) )
28 27 adantr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵𝐶𝐶𝐵 ) ) )
29 12 22 28 3imtr4d ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) )
30 oveq2 ( 𝐵 = 𝐶 → ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) )
31 29 30 impbid1 ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ 𝐵 = 𝐶 ) )