| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppccicb.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
id |
⊢ ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) |
| 3 |
1 2
|
oppccic |
⊢ ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 → 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 ) |
| 4 |
|
eqid |
⊢ ( oppCat ‘ 𝑂 ) = ( oppCat ‘ 𝑂 ) |
| 5 |
|
id |
⊢ ( 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 → 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 ) |
| 6 |
4 5
|
oppccic |
⊢ ( 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 → 𝑅 ( ≃𝑐 ‘ ( oppCat ‘ 𝑂 ) ) 𝑆 ) |
| 7 |
1
|
2oppchomf |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |
| 8 |
7
|
a1i |
⊢ ( 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 → ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 9 |
1
|
2oppccomf |
⊢ ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) |
| 10 |
9
|
a1i |
⊢ ( 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 → ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 11 |
8 10
|
cicpropd |
⊢ ( 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 → ( ≃𝑐 ‘ 𝐶 ) = ( ≃𝑐 ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 12 |
11
|
breqd |
⊢ ( 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 → ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ↔ 𝑅 ( ≃𝑐 ‘ ( oppCat ‘ 𝑂 ) ) 𝑆 ) ) |
| 13 |
6 12
|
mpbird |
⊢ ( 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) |
| 14 |
3 13
|
impbii |
⊢ ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ↔ 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 ) |