Metamath Proof Explorer


Theorem oppccicb

Description: Isomorphic objects are isomorphic in the opposite category. (Contributed by Zhi Wang, 27-Oct-2025)

Ref Expression
Hypothesis oppccicb.o 𝑂 = ( oppCat ‘ 𝐶 )
Assertion oppccicb ( 𝑅 ( ≃𝑐𝐶 ) 𝑆𝑅 ( ≃𝑐𝑂 ) 𝑆 )

Proof

Step Hyp Ref Expression
1 oppccicb.o 𝑂 = ( oppCat ‘ 𝐶 )
2 id ( 𝑅 ( ≃𝑐𝐶 ) 𝑆𝑅 ( ≃𝑐𝐶 ) 𝑆 )
3 1 2 oppccic ( 𝑅 ( ≃𝑐𝐶 ) 𝑆𝑅 ( ≃𝑐𝑂 ) 𝑆 )
4 eqid ( oppCat ‘ 𝑂 ) = ( oppCat ‘ 𝑂 )
5 id ( 𝑅 ( ≃𝑐𝑂 ) 𝑆𝑅 ( ≃𝑐𝑂 ) 𝑆 )
6 4 5 oppccic ( 𝑅 ( ≃𝑐𝑂 ) 𝑆𝑅 ( ≃𝑐 ‘ ( oppCat ‘ 𝑂 ) ) 𝑆 )
7 1 2oppchomf ( Homf𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) )
8 7 a1i ( 𝑅 ( ≃𝑐𝑂 ) 𝑆 → ( Homf𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) )
9 1 2oppccomf ( compf𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) )
10 9 a1i ( 𝑅 ( ≃𝑐𝑂 ) 𝑆 → ( compf𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) )
11 8 10 cicpropd ( 𝑅 ( ≃𝑐𝑂 ) 𝑆 → ( ≃𝑐𝐶 ) = ( ≃𝑐 ‘ ( oppCat ‘ 𝑂 ) ) )
12 11 breqd ( 𝑅 ( ≃𝑐𝑂 ) 𝑆 → ( 𝑅 ( ≃𝑐𝐶 ) 𝑆𝑅 ( ≃𝑐 ‘ ( oppCat ‘ 𝑂 ) ) 𝑆 ) )
13 6 12 mpbird ( 𝑅 ( ≃𝑐𝑂 ) 𝑆𝑅 ( ≃𝑐𝐶 ) 𝑆 )
14 3 13 impbii ( 𝑅 ( ≃𝑐𝐶 ) 𝑆𝑅 ( ≃𝑐𝑂 ) 𝑆 )