Metamath Proof Explorer


Theorem oppccicb

Description: Isomorphic objects are isomorphic in the opposite category. (Contributed by Zhi Wang, 27-Oct-2025)

Ref Expression
Hypothesis oppccicb.o O = oppCat C
Assertion oppccicb R 𝑐 C S R 𝑐 O S

Proof

Step Hyp Ref Expression
1 oppccicb.o O = oppCat C
2 id R 𝑐 C S R 𝑐 C S
3 1 2 oppccic R 𝑐 C S R 𝑐 O S
4 eqid oppCat O = oppCat O
5 id R 𝑐 O S R 𝑐 O S
6 4 5 oppccic R 𝑐 O S R 𝑐 oppCat O S
7 1 2oppchomf Hom 𝑓 C = Hom 𝑓 oppCat O
8 7 a1i R 𝑐 O S Hom 𝑓 C = Hom 𝑓 oppCat O
9 1 2oppccomf comp 𝑓 C = comp 𝑓 oppCat O
10 9 a1i R 𝑐 O S comp 𝑓 C = comp 𝑓 oppCat O
11 8 10 cicpropd R 𝑐 O S 𝑐 C = 𝑐 oppCat O
12 11 breqd R 𝑐 O S R 𝑐 C S R 𝑐 oppCat O S
13 6 12 mpbird R 𝑐 O S R 𝑐 C S
14 3 13 impbii R 𝑐 C S R 𝑐 O S