Metamath Proof Explorer


Theorem cicpropd

Description: Two structures with the same base, hom-sets and composition operation have the same isomorphic objects. (Contributed by Zhi Wang, 27-Oct-2025)

Ref Expression
Hypotheses cicpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
cicpropd.2 φ comp 𝑓 C = comp 𝑓 D
Assertion cicpropd φ 𝑐 C = 𝑐 D

Proof

Step Hyp Ref Expression
1 cicpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
2 cicpropd.2 φ comp 𝑓 C = comp 𝑓 D
3 1 2 cicpropdlem φ f 𝑐 C f 𝑐 D
4 1 eqcomd φ Hom 𝑓 D = Hom 𝑓 C
5 2 eqcomd φ comp 𝑓 D = comp 𝑓 C
6 4 5 cicpropdlem φ f 𝑐 D f 𝑐 C
7 3 6 impbida φ f 𝑐 C f 𝑐 D
8 7 eqrdv φ 𝑐 C = 𝑐 D