Description: Two structures with the same base, hom-sets and composition operation have the same isomorphic objects. (Contributed by Zhi Wang, 27-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cicpropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| cicpropd.2 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
||
| Assertion | cicpropd | |- ( ph -> ( ~=c ` C ) = ( ~=c ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cicpropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 2 | cicpropd.2 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
|
| 3 | 1 2 | cicpropdlem | |- ( ( ph /\ f e. ( ~=c ` C ) ) -> f e. ( ~=c ` D ) ) |
| 4 | 1 | eqcomd | |- ( ph -> ( Homf ` D ) = ( Homf ` C ) ) |
| 5 | 2 | eqcomd | |- ( ph -> ( comf ` D ) = ( comf ` C ) ) |
| 6 | 4 5 | cicpropdlem | |- ( ( ph /\ f e. ( ~=c ` D ) ) -> f e. ( ~=c ` C ) ) |
| 7 | 3 6 | impbida | |- ( ph -> ( f e. ( ~=c ` C ) <-> f e. ( ~=c ` D ) ) ) |
| 8 | 7 | eqrdv | |- ( ph -> ( ~=c ` C ) = ( ~=c ` D ) ) |