Metamath Proof Explorer


Theorem cicpropd

Description: Two structures with the same base, hom-sets and composition operation have the same isomorphic objects. (Contributed by Zhi Wang, 27-Oct-2025)

Ref Expression
Hypotheses cicpropd.1
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) )
cicpropd.2
|- ( ph -> ( comf ` C ) = ( comf ` D ) )
Assertion cicpropd
|- ( ph -> ( ~=c ` C ) = ( ~=c ` D ) )

Proof

Step Hyp Ref Expression
1 cicpropd.1
 |-  ( ph -> ( Homf ` C ) = ( Homf ` D ) )
2 cicpropd.2
 |-  ( ph -> ( comf ` C ) = ( comf ` D ) )
3 1 2 cicpropdlem
 |-  ( ( ph /\ f e. ( ~=c ` C ) ) -> f e. ( ~=c ` D ) )
4 1 eqcomd
 |-  ( ph -> ( Homf ` D ) = ( Homf ` C ) )
5 2 eqcomd
 |-  ( ph -> ( comf ` D ) = ( comf ` C ) )
6 4 5 cicpropdlem
 |-  ( ( ph /\ f e. ( ~=c ` D ) ) -> f e. ( ~=c ` C ) )
7 3 6 impbida
 |-  ( ph -> ( f e. ( ~=c ` C ) <-> f e. ( ~=c ` D ) ) )
8 7 eqrdv
 |-  ( ph -> ( ~=c ` C ) = ( ~=c ` D ) )