Metamath Proof Explorer


Theorem cicpropd

Description: Two structures with the same base, hom-sets and composition operation have the same isomorphic objects. (Contributed by Zhi Wang, 27-Oct-2025)

Ref Expression
Hypotheses cicpropd.1 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
cicpropd.2 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
Assertion cicpropd ( 𝜑 → ( ≃𝑐𝐶 ) = ( ≃𝑐𝐷 ) )

Proof

Step Hyp Ref Expression
1 cicpropd.1 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
2 cicpropd.2 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
3 1 2 cicpropdlem ( ( 𝜑𝑓 ∈ ( ≃𝑐𝐶 ) ) → 𝑓 ∈ ( ≃𝑐𝐷 ) )
4 1 eqcomd ( 𝜑 → ( Homf𝐷 ) = ( Homf𝐶 ) )
5 2 eqcomd ( 𝜑 → ( compf𝐷 ) = ( compf𝐶 ) )
6 4 5 cicpropdlem ( ( 𝜑𝑓 ∈ ( ≃𝑐𝐷 ) ) → 𝑓 ∈ ( ≃𝑐𝐶 ) )
7 3 6 impbida ( 𝜑 → ( 𝑓 ∈ ( ≃𝑐𝐶 ) ↔ 𝑓 ∈ ( ≃𝑐𝐷 ) ) )
8 7 eqrdv ( 𝜑 → ( ≃𝑐𝐶 ) = ( ≃𝑐𝐷 ) )