Metamath Proof Explorer


Theorem cicpropdlem

Description: Lemma for cicpropd . (Contributed by Zhi Wang, 27-Oct-2025)

Ref Expression
Hypotheses cicpropd.1 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
cicpropd.2 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
Assertion cicpropdlem ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → 𝑃 ∈ ( ≃𝑐𝐷 ) )

Proof

Step Hyp Ref Expression
1 cicpropd.1 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
2 cicpropd.2 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
3 cic1st2nd ( 𝑃 ∈ ( ≃𝑐𝐶 ) → 𝑃 = ⟨ ( 1st𝑃 ) , ( 2nd𝑃 ) ⟩ )
4 3 adantl ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → 𝑃 = ⟨ ( 1st𝑃 ) , ( 2nd𝑃 ) ⟩ )
5 cic1st2ndbr ( 𝑃 ∈ ( ≃𝑐𝐶 ) → ( 1st𝑃 ) ( ≃𝑐𝐶 ) ( 2nd𝑃 ) )
6 5 adantl ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → ( 1st𝑃 ) ( ≃𝑐𝐶 ) ( 2nd𝑃 ) )
7 1 adantr ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
8 2 adantr ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → ( compf𝐶 ) = ( compf𝐷 ) )
9 7 8 isopropd ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐷 ) )
10 9 oveqd ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → ( ( 1st𝑃 ) ( Iso ‘ 𝐶 ) ( 2nd𝑃 ) ) = ( ( 1st𝑃 ) ( Iso ‘ 𝐷 ) ( 2nd𝑃 ) ) )
11 10 neeq1d ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → ( ( ( 1st𝑃 ) ( Iso ‘ 𝐶 ) ( 2nd𝑃 ) ) ≠ ∅ ↔ ( ( 1st𝑃 ) ( Iso ‘ 𝐷 ) ( 2nd𝑃 ) ) ≠ ∅ ) )
12 eqid ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 )
13 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
14 cicrcl2 ( ( 1st𝑃 ) ( ≃𝑐𝐶 ) ( 2nd𝑃 ) → 𝐶 ∈ Cat )
15 5 14 syl ( 𝑃 ∈ ( ≃𝑐𝐶 ) → 𝐶 ∈ Cat )
16 15 adantl ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → 𝐶 ∈ Cat )
17 ciclcl ( ( 𝐶 ∈ Cat ∧ ( 1st𝑃 ) ( ≃𝑐𝐶 ) ( 2nd𝑃 ) ) → ( 1st𝑃 ) ∈ ( Base ‘ 𝐶 ) )
18 14 17 mpancom ( ( 1st𝑃 ) ( ≃𝑐𝐶 ) ( 2nd𝑃 ) → ( 1st𝑃 ) ∈ ( Base ‘ 𝐶 ) )
19 5 18 syl ( 𝑃 ∈ ( ≃𝑐𝐶 ) → ( 1st𝑃 ) ∈ ( Base ‘ 𝐶 ) )
20 19 adantl ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → ( 1st𝑃 ) ∈ ( Base ‘ 𝐶 ) )
21 cicrcl ( ( 𝐶 ∈ Cat ∧ ( 1st𝑃 ) ( ≃𝑐𝐶 ) ( 2nd𝑃 ) ) → ( 2nd𝑃 ) ∈ ( Base ‘ 𝐶 ) )
22 14 21 mpancom ( ( 1st𝑃 ) ( ≃𝑐𝐶 ) ( 2nd𝑃 ) → ( 2nd𝑃 ) ∈ ( Base ‘ 𝐶 ) )
23 5 22 syl ( 𝑃 ∈ ( ≃𝑐𝐶 ) → ( 2nd𝑃 ) ∈ ( Base ‘ 𝐶 ) )
24 23 adantl ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → ( 2nd𝑃 ) ∈ ( Base ‘ 𝐶 ) )
25 12 13 16 20 24 brcic ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → ( ( 1st𝑃 ) ( ≃𝑐𝐶 ) ( 2nd𝑃 ) ↔ ( ( 1st𝑃 ) ( Iso ‘ 𝐶 ) ( 2nd𝑃 ) ) ≠ ∅ ) )
26 eqid ( Iso ‘ 𝐷 ) = ( Iso ‘ 𝐷 )
27 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
28 1 homfeqbas ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) )
29 28 adantr ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) )
30 20 29 eleqtrd ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → ( 1st𝑃 ) ∈ ( Base ‘ 𝐷 ) )
31 30 elfvexd ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → 𝐷 ∈ V )
32 7 8 16 31 catpropd ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ Cat ) )
33 16 32 mpbid ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → 𝐷 ∈ Cat )
34 24 29 eleqtrd ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → ( 2nd𝑃 ) ∈ ( Base ‘ 𝐷 ) )
35 26 27 33 30 34 brcic ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → ( ( 1st𝑃 ) ( ≃𝑐𝐷 ) ( 2nd𝑃 ) ↔ ( ( 1st𝑃 ) ( Iso ‘ 𝐷 ) ( 2nd𝑃 ) ) ≠ ∅ ) )
36 11 25 35 3bitr4d ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → ( ( 1st𝑃 ) ( ≃𝑐𝐶 ) ( 2nd𝑃 ) ↔ ( 1st𝑃 ) ( ≃𝑐𝐷 ) ( 2nd𝑃 ) ) )
37 6 36 mpbid ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → ( 1st𝑃 ) ( ≃𝑐𝐷 ) ( 2nd𝑃 ) )
38 df-br ( ( 1st𝑃 ) ( ≃𝑐𝐷 ) ( 2nd𝑃 ) ↔ ⟨ ( 1st𝑃 ) , ( 2nd𝑃 ) ⟩ ∈ ( ≃𝑐𝐷 ) )
39 37 38 sylib ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → ⟨ ( 1st𝑃 ) , ( 2nd𝑃 ) ⟩ ∈ ( ≃𝑐𝐷 ) )
40 4 39 eqeltrd ( ( 𝜑𝑃 ∈ ( ≃𝑐𝐶 ) ) → 𝑃 ∈ ( ≃𝑐𝐷 ) )