Metamath Proof Explorer


Theorem cicpropdlem

Description: Lemma for cicpropd . (Contributed by Zhi Wang, 27-Oct-2025)

Ref Expression
Hypotheses cicpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
cicpropd.2 φ comp 𝑓 C = comp 𝑓 D
Assertion cicpropdlem φ P 𝑐 C P 𝑐 D

Proof

Step Hyp Ref Expression
1 cicpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
2 cicpropd.2 φ comp 𝑓 C = comp 𝑓 D
3 cic1st2nd P 𝑐 C P = 1 st P 2 nd P
4 3 adantl φ P 𝑐 C P = 1 st P 2 nd P
5 cic1st2ndbr P 𝑐 C 1 st P 𝑐 C 2 nd P
6 5 adantl φ P 𝑐 C 1 st P 𝑐 C 2 nd P
7 1 adantr φ P 𝑐 C Hom 𝑓 C = Hom 𝑓 D
8 2 adantr φ P 𝑐 C comp 𝑓 C = comp 𝑓 D
9 7 8 isopropd φ P 𝑐 C Iso C = Iso D
10 9 oveqd φ P 𝑐 C 1 st P Iso C 2 nd P = 1 st P Iso D 2 nd P
11 10 neeq1d φ P 𝑐 C 1 st P Iso C 2 nd P 1 st P Iso D 2 nd P
12 eqid Iso C = Iso C
13 eqid Base C = Base C
14 cicrcl2 1 st P 𝑐 C 2 nd P C Cat
15 5 14 syl P 𝑐 C C Cat
16 15 adantl φ P 𝑐 C C Cat
17 ciclcl C Cat 1 st P 𝑐 C 2 nd P 1 st P Base C
18 14 17 mpancom 1 st P 𝑐 C 2 nd P 1 st P Base C
19 5 18 syl P 𝑐 C 1 st P Base C
20 19 adantl φ P 𝑐 C 1 st P Base C
21 cicrcl C Cat 1 st P 𝑐 C 2 nd P 2 nd P Base C
22 14 21 mpancom 1 st P 𝑐 C 2 nd P 2 nd P Base C
23 5 22 syl P 𝑐 C 2 nd P Base C
24 23 adantl φ P 𝑐 C 2 nd P Base C
25 12 13 16 20 24 brcic φ P 𝑐 C 1 st P 𝑐 C 2 nd P 1 st P Iso C 2 nd P
26 eqid Iso D = Iso D
27 eqid Base D = Base D
28 1 homfeqbas φ Base C = Base D
29 28 adantr φ P 𝑐 C Base C = Base D
30 20 29 eleqtrd φ P 𝑐 C 1 st P Base D
31 30 elfvexd φ P 𝑐 C D V
32 7 8 16 31 catpropd φ P 𝑐 C C Cat D Cat
33 16 32 mpbid φ P 𝑐 C D Cat
34 24 29 eleqtrd φ P 𝑐 C 2 nd P Base D
35 26 27 33 30 34 brcic φ P 𝑐 C 1 st P 𝑐 D 2 nd P 1 st P Iso D 2 nd P
36 11 25 35 3bitr4d φ P 𝑐 C 1 st P 𝑐 C 2 nd P 1 st P 𝑐 D 2 nd P
37 6 36 mpbid φ P 𝑐 C 1 st P 𝑐 D 2 nd P
38 df-br 1 st P 𝑐 D 2 nd P 1 st P 2 nd P 𝑐 D
39 37 38 sylib φ P 𝑐 C 1 st P 2 nd P 𝑐 D
40 4 39 eqeltrd φ P 𝑐 C P 𝑐 D