| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cicpropd.1 |
|
| 2 |
|
cicpropd.2 |
|
| 3 |
|
cic1st2nd |
|
| 4 |
3
|
adantl |
|
| 5 |
|
cic1st2ndbr |
|
| 6 |
5
|
adantl |
|
| 7 |
1
|
adantr |
|
| 8 |
2
|
adantr |
|
| 9 |
7 8
|
isopropd |
|
| 10 |
9
|
oveqd |
|
| 11 |
10
|
neeq1d |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
cicrcl2 |
|
| 15 |
5 14
|
syl |
|
| 16 |
15
|
adantl |
|
| 17 |
|
ciclcl |
|
| 18 |
14 17
|
mpancom |
|
| 19 |
5 18
|
syl |
|
| 20 |
19
|
adantl |
|
| 21 |
|
cicrcl |
|
| 22 |
14 21
|
mpancom |
|
| 23 |
5 22
|
syl |
|
| 24 |
23
|
adantl |
|
| 25 |
12 13 16 20 24
|
brcic |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
1
|
homfeqbas |
|
| 29 |
28
|
adantr |
|
| 30 |
20 29
|
eleqtrd |
|
| 31 |
30
|
elfvexd |
|
| 32 |
7 8 16 31
|
catpropd |
|
| 33 |
16 32
|
mpbid |
|
| 34 |
24 29
|
eleqtrd |
|
| 35 |
26 27 33 30 34
|
brcic |
|
| 36 |
11 25 35
|
3bitr4d |
|
| 37 |
6 36
|
mpbid |
|
| 38 |
|
df-br |
|
| 39 |
37 38
|
sylib |
|
| 40 |
4 39
|
eqeltrd |
|