| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppccicb.o |
|- O = ( oppCat ` C ) |
| 2 |
|
id |
|- ( R ( ~=c ` C ) S -> R ( ~=c ` C ) S ) |
| 3 |
1 2
|
oppccic |
|- ( R ( ~=c ` C ) S -> R ( ~=c ` O ) S ) |
| 4 |
|
eqid |
|- ( oppCat ` O ) = ( oppCat ` O ) |
| 5 |
|
id |
|- ( R ( ~=c ` O ) S -> R ( ~=c ` O ) S ) |
| 6 |
4 5
|
oppccic |
|- ( R ( ~=c ` O ) S -> R ( ~=c ` ( oppCat ` O ) ) S ) |
| 7 |
1
|
2oppchomf |
|- ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) |
| 8 |
7
|
a1i |
|- ( R ( ~=c ` O ) S -> ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) ) |
| 9 |
1
|
2oppccomf |
|- ( comf ` C ) = ( comf ` ( oppCat ` O ) ) |
| 10 |
9
|
a1i |
|- ( R ( ~=c ` O ) S -> ( comf ` C ) = ( comf ` ( oppCat ` O ) ) ) |
| 11 |
8 10
|
cicpropd |
|- ( R ( ~=c ` O ) S -> ( ~=c ` C ) = ( ~=c ` ( oppCat ` O ) ) ) |
| 12 |
11
|
breqd |
|- ( R ( ~=c ` O ) S -> ( R ( ~=c ` C ) S <-> R ( ~=c ` ( oppCat ` O ) ) S ) ) |
| 13 |
6 12
|
mpbird |
|- ( R ( ~=c ` O ) S -> R ( ~=c ` C ) S ) |
| 14 |
3 13
|
impbii |
|- ( R ( ~=c ` C ) S <-> R ( ~=c ` O ) S ) |