| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppccicb.o |
|- O = ( oppCat ` C ) |
| 2 |
|
cic1st2nd |
|- ( p e. ( ~=c ` C ) -> p = <. ( 1st ` p ) , ( 2nd ` p ) >. ) |
| 3 |
|
cic1st2ndbr |
|- ( p e. ( ~=c ` C ) -> ( 1st ` p ) ( ~=c ` C ) ( 2nd ` p ) ) |
| 4 |
1 3
|
oppccic |
|- ( p e. ( ~=c ` C ) -> ( 1st ` p ) ( ~=c ` O ) ( 2nd ` p ) ) |
| 5 |
|
df-br |
|- ( ( 1st ` p ) ( ~=c ` O ) ( 2nd ` p ) <-> <. ( 1st ` p ) , ( 2nd ` p ) >. e. ( ~=c ` O ) ) |
| 6 |
4 5
|
sylib |
|- ( p e. ( ~=c ` C ) -> <. ( 1st ` p ) , ( 2nd ` p ) >. e. ( ~=c ` O ) ) |
| 7 |
2 6
|
eqeltrd |
|- ( p e. ( ~=c ` C ) -> p e. ( ~=c ` O ) ) |
| 8 |
|
cic1st2nd |
|- ( p e. ( ~=c ` O ) -> p = <. ( 1st ` p ) , ( 2nd ` p ) >. ) |
| 9 |
|
cic1st2ndbr |
|- ( p e. ( ~=c ` O ) -> ( 1st ` p ) ( ~=c ` O ) ( 2nd ` p ) ) |
| 10 |
1
|
oppccicb |
|- ( ( 1st ` p ) ( ~=c ` C ) ( 2nd ` p ) <-> ( 1st ` p ) ( ~=c ` O ) ( 2nd ` p ) ) |
| 11 |
9 10
|
sylibr |
|- ( p e. ( ~=c ` O ) -> ( 1st ` p ) ( ~=c ` C ) ( 2nd ` p ) ) |
| 12 |
|
df-br |
|- ( ( 1st ` p ) ( ~=c ` C ) ( 2nd ` p ) <-> <. ( 1st ` p ) , ( 2nd ` p ) >. e. ( ~=c ` C ) ) |
| 13 |
11 12
|
sylib |
|- ( p e. ( ~=c ` O ) -> <. ( 1st ` p ) , ( 2nd ` p ) >. e. ( ~=c ` C ) ) |
| 14 |
8 13
|
eqeltrd |
|- ( p e. ( ~=c ` O ) -> p e. ( ~=c ` C ) ) |
| 15 |
7 14
|
impbii |
|- ( p e. ( ~=c ` C ) <-> p e. ( ~=c ` O ) ) |
| 16 |
15
|
eqriv |
|- ( ~=c ` C ) = ( ~=c ` O ) |