Metamath Proof Explorer


Theorem oppcciceq

Description: The opposite category has the same isomorphic objects as the original category. (Contributed by Zhi Wang, 27-Oct-2025)

Ref Expression
Hypothesis oppccicb.o O = oppCat C
Assertion oppcciceq 𝑐 C = 𝑐 O

Proof

Step Hyp Ref Expression
1 oppccicb.o O = oppCat C
2 cic1st2nd p 𝑐 C p = 1 st p 2 nd p
3 cic1st2ndbr p 𝑐 C 1 st p 𝑐 C 2 nd p
4 1 3 oppccic p 𝑐 C 1 st p 𝑐 O 2 nd p
5 df-br 1 st p 𝑐 O 2 nd p 1 st p 2 nd p 𝑐 O
6 4 5 sylib p 𝑐 C 1 st p 2 nd p 𝑐 O
7 2 6 eqeltrd p 𝑐 C p 𝑐 O
8 cic1st2nd p 𝑐 O p = 1 st p 2 nd p
9 cic1st2ndbr p 𝑐 O 1 st p 𝑐 O 2 nd p
10 1 oppccicb 1 st p 𝑐 C 2 nd p 1 st p 𝑐 O 2 nd p
11 9 10 sylibr p 𝑐 O 1 st p 𝑐 C 2 nd p
12 df-br 1 st p 𝑐 C 2 nd p 1 st p 2 nd p 𝑐 C
13 11 12 sylib p 𝑐 O 1 st p 2 nd p 𝑐 C
14 8 13 eqeltrd p 𝑐 O p 𝑐 C
15 7 14 impbii p 𝑐 C p 𝑐 O
16 15 eqriv 𝑐 C = 𝑐 O