| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppgbas.1 |
⊢ 𝑂 = ( oppg ‘ 𝑅 ) |
| 2 |
1
|
oppgmnd |
⊢ ( 𝑅 ∈ Mnd → 𝑂 ∈ Mnd ) |
| 3 |
|
eqid |
⊢ ( oppg ‘ 𝑂 ) = ( oppg ‘ 𝑂 ) |
| 4 |
3
|
oppgmnd |
⊢ ( 𝑂 ∈ Mnd → ( oppg ‘ 𝑂 ) ∈ Mnd ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 6 |
1 5
|
oppgbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 7 |
3 6
|
oppgbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppg ‘ 𝑂 ) ) |
| 8 |
7
|
a1i |
⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ ( oppg ‘ 𝑂 ) ) ) |
| 9 |
|
eqidd |
⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
| 10 |
|
eqid |
⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) |
| 11 |
|
eqid |
⊢ ( +g ‘ ( oppg ‘ 𝑂 ) ) = ( +g ‘ ( oppg ‘ 𝑂 ) ) |
| 12 |
10 3 11
|
oppgplus |
⊢ ( 𝑥 ( +g ‘ ( oppg ‘ 𝑂 ) ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) |
| 13 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 14 |
13 1 10
|
oppgplus |
⊢ ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) |
| 15 |
12 14
|
eqtri |
⊢ ( 𝑥 ( +g ‘ ( oppg ‘ 𝑂 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) |
| 16 |
15
|
a1i |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ ( oppg ‘ 𝑂 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 17 |
8 9 16
|
mndpropd |
⊢ ( ⊤ → ( ( oppg ‘ 𝑂 ) ∈ Mnd ↔ 𝑅 ∈ Mnd ) ) |
| 18 |
17
|
mptru |
⊢ ( ( oppg ‘ 𝑂 ) ∈ Mnd ↔ 𝑅 ∈ Mnd ) |
| 19 |
4 18
|
sylib |
⊢ ( 𝑂 ∈ Mnd → 𝑅 ∈ Mnd ) |
| 20 |
2 19
|
impbii |
⊢ ( 𝑅 ∈ Mnd ↔ 𝑂 ∈ Mnd ) |