| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordtri2or2 | ⊢ ( ( Ord  𝐵  ∧  Ord  𝐶 )  →  ( 𝐵  ⊆  𝐶  ∨  𝐶  ⊆  𝐵 ) ) | 
						
							| 2 |  | ssequn1 | ⊢ ( 𝐵  ⊆  𝐶  ↔  ( 𝐵  ∪  𝐶 )  =  𝐶 ) | 
						
							| 3 |  | sseq2 | ⊢ ( ( 𝐵  ∪  𝐶 )  =  𝐶  →  ( 𝐴  ⊆  ( 𝐵  ∪  𝐶 )  ↔  𝐴  ⊆  𝐶 ) ) | 
						
							| 4 | 2 3 | sylbi | ⊢ ( 𝐵  ⊆  𝐶  →  ( 𝐴  ⊆  ( 𝐵  ∪  𝐶 )  ↔  𝐴  ⊆  𝐶 ) ) | 
						
							| 5 |  | olc | ⊢ ( 𝐴  ⊆  𝐶  →  ( 𝐴  ⊆  𝐵  ∨  𝐴  ⊆  𝐶 ) ) | 
						
							| 6 | 4 5 | biimtrdi | ⊢ ( 𝐵  ⊆  𝐶  →  ( 𝐴  ⊆  ( 𝐵  ∪  𝐶 )  →  ( 𝐴  ⊆  𝐵  ∨  𝐴  ⊆  𝐶 ) ) ) | 
						
							| 7 |  | ssequn2 | ⊢ ( 𝐶  ⊆  𝐵  ↔  ( 𝐵  ∪  𝐶 )  =  𝐵 ) | 
						
							| 8 |  | sseq2 | ⊢ ( ( 𝐵  ∪  𝐶 )  =  𝐵  →  ( 𝐴  ⊆  ( 𝐵  ∪  𝐶 )  ↔  𝐴  ⊆  𝐵 ) ) | 
						
							| 9 | 7 8 | sylbi | ⊢ ( 𝐶  ⊆  𝐵  →  ( 𝐴  ⊆  ( 𝐵  ∪  𝐶 )  ↔  𝐴  ⊆  𝐵 ) ) | 
						
							| 10 |  | orc | ⊢ ( 𝐴  ⊆  𝐵  →  ( 𝐴  ⊆  𝐵  ∨  𝐴  ⊆  𝐶 ) ) | 
						
							| 11 | 9 10 | biimtrdi | ⊢ ( 𝐶  ⊆  𝐵  →  ( 𝐴  ⊆  ( 𝐵  ∪  𝐶 )  →  ( 𝐴  ⊆  𝐵  ∨  𝐴  ⊆  𝐶 ) ) ) | 
						
							| 12 | 6 11 | jaoi | ⊢ ( ( 𝐵  ⊆  𝐶  ∨  𝐶  ⊆  𝐵 )  →  ( 𝐴  ⊆  ( 𝐵  ∪  𝐶 )  →  ( 𝐴  ⊆  𝐵  ∨  𝐴  ⊆  𝐶 ) ) ) | 
						
							| 13 | 1 12 | syl | ⊢ ( ( Ord  𝐵  ∧  Ord  𝐶 )  →  ( 𝐴  ⊆  ( 𝐵  ∪  𝐶 )  →  ( 𝐴  ⊆  𝐵  ∨  𝐴  ⊆  𝐶 ) ) ) | 
						
							| 14 |  | ssun | ⊢ ( ( 𝐴  ⊆  𝐵  ∨  𝐴  ⊆  𝐶 )  →  𝐴  ⊆  ( 𝐵  ∪  𝐶 ) ) | 
						
							| 15 | 13 14 | impbid1 | ⊢ ( ( Ord  𝐵  ∧  Ord  𝐶 )  →  ( 𝐴  ⊆  ( 𝐵  ∪  𝐶 )  ↔  ( 𝐴  ⊆  𝐵  ∨  𝐴  ⊆  𝐶 ) ) ) |