Metamath Proof Explorer


Theorem ordssun

Description: Property of a subclass of the maximum (i.e. union) of two ordinals. (Contributed by NM, 28-Nov-2003)

Ref Expression
Assertion ordssun OrdBOrdCABCABAC

Proof

Step Hyp Ref Expression
1 ordtri2or2 OrdBOrdCBCCB
2 ssequn1 BCBC=C
3 sseq2 BC=CABCAC
4 2 3 sylbi BCABCAC
5 olc ACABAC
6 4 5 syl6bi BCABCABAC
7 ssequn2 CBBC=B
8 sseq2 BC=BABCAB
9 7 8 sylbi CBABCAB
10 orc ABABAC
11 9 10 syl6bi CBABCABAC
12 6 11 jaoi BCCBABCABAC
13 1 12 syl OrdBOrdCABCABAC
14 ssun ABACABC
15 13 14 impbid1 OrdBOrdCABCABAC