Metamath Proof Explorer


Theorem outsideofcom

Description: Commutativity law for outsideness. Theorem 6.6 of Schwabhauser p. 44. (Contributed by Scott Fenton, 18-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion outsideofcom ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑃 OutsideOf ⟨ 𝐴 , 𝐵 ⟩ ↔ 𝑃 OutsideOf ⟨ 𝐵 , 𝐴 ⟩ ) )

Proof

Step Hyp Ref Expression
1 3ancoma ( ( 𝐴𝑃𝐵𝑃 ∧ ( 𝐴 Btwn ⟨ 𝑃 , 𝐵 ⟩ ∨ 𝐵 Btwn ⟨ 𝑃 , 𝐴 ⟩ ) ) ↔ ( 𝐵𝑃𝐴𝑃 ∧ ( 𝐴 Btwn ⟨ 𝑃 , 𝐵 ⟩ ∨ 𝐵 Btwn ⟨ 𝑃 , 𝐴 ⟩ ) ) )
2 orcom ( ( 𝐴 Btwn ⟨ 𝑃 , 𝐵 ⟩ ∨ 𝐵 Btwn ⟨ 𝑃 , 𝐴 ⟩ ) ↔ ( 𝐵 Btwn ⟨ 𝑃 , 𝐴 ⟩ ∨ 𝐴 Btwn ⟨ 𝑃 , 𝐵 ⟩ ) )
3 2 3anbi3i ( ( 𝐵𝑃𝐴𝑃 ∧ ( 𝐴 Btwn ⟨ 𝑃 , 𝐵 ⟩ ∨ 𝐵 Btwn ⟨ 𝑃 , 𝐴 ⟩ ) ) ↔ ( 𝐵𝑃𝐴𝑃 ∧ ( 𝐵 Btwn ⟨ 𝑃 , 𝐴 ⟩ ∨ 𝐴 Btwn ⟨ 𝑃 , 𝐵 ⟩ ) ) )
4 1 3 bitri ( ( 𝐴𝑃𝐵𝑃 ∧ ( 𝐴 Btwn ⟨ 𝑃 , 𝐵 ⟩ ∨ 𝐵 Btwn ⟨ 𝑃 , 𝐴 ⟩ ) ) ↔ ( 𝐵𝑃𝐴𝑃 ∧ ( 𝐵 Btwn ⟨ 𝑃 , 𝐴 ⟩ ∨ 𝐴 Btwn ⟨ 𝑃 , 𝐵 ⟩ ) ) )
5 4 a1i ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐴𝑃𝐵𝑃 ∧ ( 𝐴 Btwn ⟨ 𝑃 , 𝐵 ⟩ ∨ 𝐵 Btwn ⟨ 𝑃 , 𝐴 ⟩ ) ) ↔ ( 𝐵𝑃𝐴𝑃 ∧ ( 𝐵 Btwn ⟨ 𝑃 , 𝐴 ⟩ ∨ 𝐴 Btwn ⟨ 𝑃 , 𝐵 ⟩ ) ) ) )
6 broutsideof2 ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑃 OutsideOf ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐴𝑃𝐵𝑃 ∧ ( 𝐴 Btwn ⟨ 𝑃 , 𝐵 ⟩ ∨ 𝐵 Btwn ⟨ 𝑃 , 𝐴 ⟩ ) ) ) )
7 3ancomb ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) )
8 broutsideof2 ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑃 OutsideOf ⟨ 𝐵 , 𝐴 ⟩ ↔ ( 𝐵𝑃𝐴𝑃 ∧ ( 𝐵 Btwn ⟨ 𝑃 , 𝐴 ⟩ ∨ 𝐴 Btwn ⟨ 𝑃 , 𝐵 ⟩ ) ) ) )
9 7 8 sylan2b ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑃 OutsideOf ⟨ 𝐵 , 𝐴 ⟩ ↔ ( 𝐵𝑃𝐴𝑃 ∧ ( 𝐵 Btwn ⟨ 𝑃 , 𝐴 ⟩ ∨ 𝐴 Btwn ⟨ 𝑃 , 𝐵 ⟩ ) ) ) )
10 5 6 9 3bitr4d ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑃 OutsideOf ⟨ 𝐴 , 𝐵 ⟩ ↔ 𝑃 OutsideOf ⟨ 𝐵 , 𝐴 ⟩ ) )