Step |
Hyp |
Ref |
Expression |
1 |
|
3ancoma |
|- ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) <-> ( B =/= P /\ A =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
2 |
|
orcom |
|- ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) <-> ( B Btwn <. P , A >. \/ A Btwn <. P , B >. ) ) |
3 |
2
|
3anbi3i |
|- ( ( B =/= P /\ A =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) <-> ( B =/= P /\ A =/= P /\ ( B Btwn <. P , A >. \/ A Btwn <. P , B >. ) ) ) |
4 |
1 3
|
bitri |
|- ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) <-> ( B =/= P /\ A =/= P /\ ( B Btwn <. P , A >. \/ A Btwn <. P , B >. ) ) ) |
5 |
4
|
a1i |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) <-> ( B =/= P /\ A =/= P /\ ( B Btwn <. P , A >. \/ A Btwn <. P , B >. ) ) ) ) |
6 |
|
broutsideof2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) |
7 |
|
3ancomb |
|- ( ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( P e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) |
8 |
|
broutsideof2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( P OutsideOf <. B , A >. <-> ( B =/= P /\ A =/= P /\ ( B Btwn <. P , A >. \/ A Btwn <. P , B >. ) ) ) ) |
9 |
7 8
|
sylan2b |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. B , A >. <-> ( B =/= P /\ A =/= P /\ ( B Btwn <. P , A >. \/ A Btwn <. P , B >. ) ) ) ) |
10 |
5 6 9
|
3bitr4d |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> P OutsideOf <. B , A >. ) ) |