| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3ancoma |  |-  ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) <-> ( B =/= P /\ A =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 2 |  | orcom |  |-  ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) <-> ( B Btwn <. P , A >. \/ A Btwn <. P , B >. ) ) | 
						
							| 3 | 2 | 3anbi3i |  |-  ( ( B =/= P /\ A =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) <-> ( B =/= P /\ A =/= P /\ ( B Btwn <. P , A >. \/ A Btwn <. P , B >. ) ) ) | 
						
							| 4 | 1 3 | bitri |  |-  ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) <-> ( B =/= P /\ A =/= P /\ ( B Btwn <. P , A >. \/ A Btwn <. P , B >. ) ) ) | 
						
							| 5 | 4 | a1i |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) <-> ( B =/= P /\ A =/= P /\ ( B Btwn <. P , A >. \/ A Btwn <. P , B >. ) ) ) ) | 
						
							| 6 |  | broutsideof2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) | 
						
							| 7 |  | 3ancomb |  |-  ( ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( P e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) | 
						
							| 8 |  | broutsideof2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( P OutsideOf <. B , A >. <-> ( B =/= P /\ A =/= P /\ ( B Btwn <. P , A >. \/ A Btwn <. P , B >. ) ) ) ) | 
						
							| 9 | 7 8 | sylan2b |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. B , A >. <-> ( B =/= P /\ A =/= P /\ ( B Btwn <. P , A >. \/ A Btwn <. P , B >. ) ) ) ) | 
						
							| 10 | 5 6 9 | 3bitr4d |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> P OutsideOf <. B , A >. ) ) |