| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|- ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) -> A =/= P ) |
| 2 |
|
simplr |
|- ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) -> B =/= P ) |
| 3 |
|
simprr |
|- ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) -> C =/= P ) |
| 4 |
1 2 3
|
3jca |
|- ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) -> ( A =/= P /\ B =/= P /\ C =/= P ) ) |
| 5 |
|
simplr1 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ C =/= P ) ) /\ ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) -> A =/= P ) |
| 6 |
|
simplr3 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ C =/= P ) ) /\ ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) -> C =/= P ) |
| 7 |
|
df-3an |
|- ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. /\ B Btwn <. P , C >. ) <-> ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) /\ B Btwn <. P , C >. ) ) |
| 8 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> N e. NN ) |
| 9 |
|
simp3r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> P e. ( EE ` N ) ) |
| 10 |
|
simp2l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 11 |
|
simp2r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 12 |
|
simp3l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
| 13 |
|
simpr2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. /\ B Btwn <. P , C >. ) ) -> A Btwn <. P , B >. ) |
| 14 |
|
simpr3 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. /\ B Btwn <. P , C >. ) ) -> B Btwn <. P , C >. ) |
| 15 |
8 9 10 11 12 13 14
|
btwnexchand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. /\ B Btwn <. P , C >. ) ) -> A Btwn <. P , C >. ) |
| 16 |
15
|
orcd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. /\ B Btwn <. P , C >. ) ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) |
| 17 |
7 16
|
sylan2br |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) /\ B Btwn <. P , C >. ) ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) |
| 18 |
17
|
expr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) ) -> ( B Btwn <. P , C >. -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) |
| 19 |
|
simprlr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) /\ C Btwn <. P , B >. ) ) -> A Btwn <. P , B >. ) |
| 20 |
|
simprr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) /\ C Btwn <. P , B >. ) ) -> C Btwn <. P , B >. ) |
| 21 |
|
btwnconn3 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A Btwn <. P , B >. /\ C Btwn <. P , B >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) |
| 22 |
8 9 10 12 11 21
|
syl122anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( A Btwn <. P , B >. /\ C Btwn <. P , B >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) |
| 23 |
22
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) /\ C Btwn <. P , B >. ) ) -> ( ( A Btwn <. P , B >. /\ C Btwn <. P , B >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) |
| 24 |
19 20 23
|
mp2and |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) /\ C Btwn <. P , B >. ) ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) |
| 25 |
24
|
expr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) ) -> ( C Btwn <. P , B >. -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) |
| 26 |
18 25
|
jaod |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) ) -> ( ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) |
| 27 |
26
|
expr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ C =/= P ) ) -> ( A Btwn <. P , B >. -> ( ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) ) |
| 28 |
|
simpll2 |
|- ( ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ B Btwn <. P , C >. ) -> B =/= P ) |
| 29 |
28
|
adantl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ B Btwn <. P , C >. ) ) -> B =/= P ) |
| 30 |
29
|
necomd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ B Btwn <. P , C >. ) ) -> P =/= B ) |
| 31 |
|
simprlr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ B Btwn <. P , C >. ) ) -> B Btwn <. P , A >. ) |
| 32 |
|
simprr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ B Btwn <. P , C >. ) ) -> B Btwn <. P , C >. ) |
| 33 |
|
btwnconn1 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( P =/= B /\ B Btwn <. P , A >. /\ B Btwn <. P , C >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) |
| 34 |
8 9 11 10 12 33
|
syl122anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( P =/= B /\ B Btwn <. P , A >. /\ B Btwn <. P , C >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) |
| 35 |
34
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ B Btwn <. P , C >. ) ) -> ( ( P =/= B /\ B Btwn <. P , A >. /\ B Btwn <. P , C >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) |
| 36 |
30 31 32 35
|
mp3and |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ B Btwn <. P , C >. ) ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) |
| 37 |
36
|
expr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) ) -> ( B Btwn <. P , C >. -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) |
| 38 |
|
df-3an |
|- ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. /\ C Btwn <. P , B >. ) <-> ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ C Btwn <. P , B >. ) ) |
| 39 |
|
simpr3 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. /\ C Btwn <. P , B >. ) ) -> C Btwn <. P , B >. ) |
| 40 |
|
simpr2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. /\ C Btwn <. P , B >. ) ) -> B Btwn <. P , A >. ) |
| 41 |
8 9 12 11 10 39 40
|
btwnexchand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. /\ C Btwn <. P , B >. ) ) -> C Btwn <. P , A >. ) |
| 42 |
41
|
olcd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. /\ C Btwn <. P , B >. ) ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) |
| 43 |
38 42
|
sylan2br |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ C Btwn <. P , B >. ) ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) |
| 44 |
43
|
expr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) ) -> ( C Btwn <. P , B >. -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) |
| 45 |
37 44
|
jaod |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) ) -> ( ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) |
| 46 |
45
|
expr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ C =/= P ) ) -> ( B Btwn <. P , A >. -> ( ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) ) |
| 47 |
27 46
|
jaod |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ C =/= P ) ) -> ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) -> ( ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) ) |
| 48 |
47
|
imp32 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ C =/= P ) ) /\ ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) |
| 49 |
5 6 48
|
3jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ C =/= P ) ) /\ ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) -> ( A =/= P /\ C =/= P /\ ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) |
| 50 |
49
|
exp31 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( A =/= P /\ B =/= P /\ C =/= P ) -> ( ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) -> ( A =/= P /\ C =/= P /\ ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) ) ) |
| 51 |
4 50
|
syl5 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) -> ( ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) -> ( A =/= P /\ C =/= P /\ ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) ) ) |
| 52 |
51
|
impd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) /\ ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) -> ( A =/= P /\ C =/= P /\ ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) ) |
| 53 |
|
broutsideof2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) |
| 54 |
8 9 10 11 53
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) |
| 55 |
|
broutsideof2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( P OutsideOf <. B , C >. <-> ( B =/= P /\ C =/= P /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) ) |
| 56 |
8 9 11 12 55
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( P OutsideOf <. B , C >. <-> ( B =/= P /\ C =/= P /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) ) |
| 57 |
54 56
|
anbi12d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( P OutsideOf <. A , B >. /\ P OutsideOf <. B , C >. ) <-> ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) /\ ( B =/= P /\ C =/= P /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) ) ) |
| 58 |
|
df-3an |
|- ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) <-> ( ( A =/= P /\ B =/= P ) /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
| 59 |
|
df-3an |
|- ( ( B =/= P /\ C =/= P /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) <-> ( ( B =/= P /\ C =/= P ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) |
| 60 |
58 59
|
anbi12i |
|- ( ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) /\ ( B =/= P /\ C =/= P /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) <-> ( ( ( A =/= P /\ B =/= P ) /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) /\ ( ( B =/= P /\ C =/= P ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) ) |
| 61 |
|
an4 |
|- ( ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) /\ ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) <-> ( ( ( A =/= P /\ B =/= P ) /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) /\ ( ( B =/= P /\ C =/= P ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) ) |
| 62 |
60 61
|
bitr4i |
|- ( ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) /\ ( B =/= P /\ C =/= P /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) <-> ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) /\ ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) ) |
| 63 |
57 62
|
bitrdi |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( P OutsideOf <. A , B >. /\ P OutsideOf <. B , C >. ) <-> ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) /\ ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) ) ) |
| 64 |
|
broutsideof2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , C >. <-> ( A =/= P /\ C =/= P /\ ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) ) |
| 65 |
8 9 10 12 64
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , C >. <-> ( A =/= P /\ C =/= P /\ ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) ) |
| 66 |
52 63 65
|
3imtr4d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( P OutsideOf <. A , B >. /\ P OutsideOf <. B , C >. ) -> P OutsideOf <. A , C >. ) ) |