| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll |  |-  ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) -> A =/= P ) | 
						
							| 2 |  | simplr |  |-  ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) -> B =/= P ) | 
						
							| 3 |  | simprr |  |-  ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) -> C =/= P ) | 
						
							| 4 | 1 2 3 | 3jca |  |-  ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) -> ( A =/= P /\ B =/= P /\ C =/= P ) ) | 
						
							| 5 |  | simplr1 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ C =/= P ) ) /\ ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) -> A =/= P ) | 
						
							| 6 |  | simplr3 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ C =/= P ) ) /\ ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) -> C =/= P ) | 
						
							| 7 |  | df-3an |  |-  ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. /\ B Btwn <. P , C >. ) <-> ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) /\ B Btwn <. P , C >. ) ) | 
						
							| 8 |  | simp1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 9 |  | simp3r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> P e. ( EE ` N ) ) | 
						
							| 10 |  | simp2l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 11 |  | simp2r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 12 |  | simp3l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 13 |  | simpr2 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. /\ B Btwn <. P , C >. ) ) -> A Btwn <. P , B >. ) | 
						
							| 14 |  | simpr3 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. /\ B Btwn <. P , C >. ) ) -> B Btwn <. P , C >. ) | 
						
							| 15 | 8 9 10 11 12 13 14 | btwnexchand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. /\ B Btwn <. P , C >. ) ) -> A Btwn <. P , C >. ) | 
						
							| 16 | 15 | orcd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. /\ B Btwn <. P , C >. ) ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) | 
						
							| 17 | 7 16 | sylan2br |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) /\ B Btwn <. P , C >. ) ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) | 
						
							| 18 | 17 | expr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) ) -> ( B Btwn <. P , C >. -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) | 
						
							| 19 |  | simprlr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) /\ C Btwn <. P , B >. ) ) -> A Btwn <. P , B >. ) | 
						
							| 20 |  | simprr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) /\ C Btwn <. P , B >. ) ) -> C Btwn <. P , B >. ) | 
						
							| 21 |  | btwnconn3 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A Btwn <. P , B >. /\ C Btwn <. P , B >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) | 
						
							| 22 | 8 9 10 12 11 21 | syl122anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( A Btwn <. P , B >. /\ C Btwn <. P , B >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) /\ C Btwn <. P , B >. ) ) -> ( ( A Btwn <. P , B >. /\ C Btwn <. P , B >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) | 
						
							| 24 | 19 20 23 | mp2and |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) /\ C Btwn <. P , B >. ) ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) | 
						
							| 25 | 24 | expr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) ) -> ( C Btwn <. P , B >. -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) | 
						
							| 26 | 18 25 | jaod |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ A Btwn <. P , B >. ) ) -> ( ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) | 
						
							| 27 | 26 | expr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ C =/= P ) ) -> ( A Btwn <. P , B >. -> ( ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) ) | 
						
							| 28 |  | simpll2 |  |-  ( ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ B Btwn <. P , C >. ) -> B =/= P ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ B Btwn <. P , C >. ) ) -> B =/= P ) | 
						
							| 30 | 29 | necomd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ B Btwn <. P , C >. ) ) -> P =/= B ) | 
						
							| 31 |  | simprlr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ B Btwn <. P , C >. ) ) -> B Btwn <. P , A >. ) | 
						
							| 32 |  | simprr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ B Btwn <. P , C >. ) ) -> B Btwn <. P , C >. ) | 
						
							| 33 |  | btwnconn1 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( P =/= B /\ B Btwn <. P , A >. /\ B Btwn <. P , C >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) | 
						
							| 34 | 8 9 11 10 12 33 | syl122anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( P =/= B /\ B Btwn <. P , A >. /\ B Btwn <. P , C >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ B Btwn <. P , C >. ) ) -> ( ( P =/= B /\ B Btwn <. P , A >. /\ B Btwn <. P , C >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) | 
						
							| 36 | 30 31 32 35 | mp3and |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ B Btwn <. P , C >. ) ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) | 
						
							| 37 | 36 | expr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) ) -> ( B Btwn <. P , C >. -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) | 
						
							| 38 |  | df-3an |  |-  ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. /\ C Btwn <. P , B >. ) <-> ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ C Btwn <. P , B >. ) ) | 
						
							| 39 |  | simpr3 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. /\ C Btwn <. P , B >. ) ) -> C Btwn <. P , B >. ) | 
						
							| 40 |  | simpr2 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. /\ C Btwn <. P , B >. ) ) -> B Btwn <. P , A >. ) | 
						
							| 41 | 8 9 12 11 10 39 40 | btwnexchand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. /\ C Btwn <. P , B >. ) ) -> C Btwn <. P , A >. ) | 
						
							| 42 | 41 | olcd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. /\ C Btwn <. P , B >. ) ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) | 
						
							| 43 | 38 42 | sylan2br |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) /\ C Btwn <. P , B >. ) ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) | 
						
							| 44 | 43 | expr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) ) -> ( C Btwn <. P , B >. -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) | 
						
							| 45 | 37 44 | jaod |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P /\ C =/= P ) /\ B Btwn <. P , A >. ) ) -> ( ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) | 
						
							| 46 | 45 | expr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ C =/= P ) ) -> ( B Btwn <. P , A >. -> ( ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) ) | 
						
							| 47 | 27 46 | jaod |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ C =/= P ) ) -> ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) -> ( ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) ) | 
						
							| 48 | 47 | imp32 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ C =/= P ) ) /\ ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) -> ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) | 
						
							| 49 | 5 6 48 | 3jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ C =/= P ) ) /\ ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) -> ( A =/= P /\ C =/= P /\ ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) | 
						
							| 50 | 49 | exp31 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( A =/= P /\ B =/= P /\ C =/= P ) -> ( ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) -> ( A =/= P /\ C =/= P /\ ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) ) ) | 
						
							| 51 | 4 50 | syl5 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) -> ( ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) -> ( A =/= P /\ C =/= P /\ ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) ) ) | 
						
							| 52 | 51 | impd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) /\ ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) -> ( A =/= P /\ C =/= P /\ ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) ) | 
						
							| 53 |  | broutsideof2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) | 
						
							| 54 | 8 9 10 11 53 | syl13anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) | 
						
							| 55 |  | broutsideof2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( P OutsideOf <. B , C >. <-> ( B =/= P /\ C =/= P /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) ) | 
						
							| 56 | 8 9 11 12 55 | syl13anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( P OutsideOf <. B , C >. <-> ( B =/= P /\ C =/= P /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) ) | 
						
							| 57 | 54 56 | anbi12d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( P OutsideOf <. A , B >. /\ P OutsideOf <. B , C >. ) <-> ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) /\ ( B =/= P /\ C =/= P /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) ) ) | 
						
							| 58 |  | df-3an |  |-  ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) <-> ( ( A =/= P /\ B =/= P ) /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 59 |  | df-3an |  |-  ( ( B =/= P /\ C =/= P /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) <-> ( ( B =/= P /\ C =/= P ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) | 
						
							| 60 | 58 59 | anbi12i |  |-  ( ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) /\ ( B =/= P /\ C =/= P /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) <-> ( ( ( A =/= P /\ B =/= P ) /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) /\ ( ( B =/= P /\ C =/= P ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) ) | 
						
							| 61 |  | an4 |  |-  ( ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) /\ ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) <-> ( ( ( A =/= P /\ B =/= P ) /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) /\ ( ( B =/= P /\ C =/= P ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) ) | 
						
							| 62 | 60 61 | bitr4i |  |-  ( ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) /\ ( B =/= P /\ C =/= P /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) <-> ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) /\ ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) ) | 
						
							| 63 | 57 62 | bitrdi |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( P OutsideOf <. A , B >. /\ P OutsideOf <. B , C >. ) <-> ( ( ( A =/= P /\ B =/= P ) /\ ( B =/= P /\ C =/= P ) ) /\ ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) /\ ( B Btwn <. P , C >. \/ C Btwn <. P , B >. ) ) ) ) ) | 
						
							| 64 |  | broutsideof2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , C >. <-> ( A =/= P /\ C =/= P /\ ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) ) | 
						
							| 65 | 8 9 10 12 64 | syl13anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , C >. <-> ( A =/= P /\ C =/= P /\ ( A Btwn <. P , C >. \/ C Btwn <. P , A >. ) ) ) ) | 
						
							| 66 | 52 63 65 | 3imtr4d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( P OutsideOf <. A , B >. /\ P OutsideOf <. B , C >. ) -> P OutsideOf <. A , C >. ) ) |