Metamath Proof Explorer


Theorem outsideofeq

Description: Uniqueness law for OutsideOf . Analogue of segconeq . (Contributed by Scott Fenton, 24-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion outsideofeq
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( ( A OutsideOf <. X , R >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A OutsideOf <. Y , R >. /\ <. A , Y >. Cgr <. B , C >. ) ) -> X = Y ) )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> N e. NN )
2 simp21
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> A e. ( EE ` N ) )
3 simp32
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> X e. ( EE ` N ) )
4 simp22
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> R e. ( EE ` N ) )
5 broutsideof2
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ X e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( A OutsideOf <. X , R >. <-> ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) ) )
6 1 2 3 4 5 syl13anc
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( A OutsideOf <. X , R >. <-> ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) ) )
7 6 anbi1d
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( A OutsideOf <. X , R >. /\ <. A , X >. Cgr <. B , C >. ) <-> ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) ) )
8 simp33
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> Y e. ( EE ` N ) )
9 broutsideof2
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ Y e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( A OutsideOf <. Y , R >. <-> ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) ) )
10 1 2 8 4 9 syl13anc
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( A OutsideOf <. Y , R >. <-> ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) ) )
11 10 anbi1d
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( A OutsideOf <. Y , R >. /\ <. A , Y >. Cgr <. B , C >. ) <-> ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) )
12 7 11 anbi12d
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( ( A OutsideOf <. X , R >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A OutsideOf <. Y , R >. /\ <. A , Y >. Cgr <. B , C >. ) ) <-> ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) )
13 simpll3
 |-  ( ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) -> ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) )
14 simprl3
 |-  ( ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) -> ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) )
15 13 14 jca
 |-  ( ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) -> ( ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) )
16 15 adantl
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) )
17 simpll2
 |-  ( ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) -> R =/= A )
18 17 adantl
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> R =/= A )
19 simp23
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> B e. ( EE ` N ) )
20 simp31
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> C e. ( EE ` N ) )
21 simprlr
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. A , X >. Cgr <. B , C >. )
22 simprrr
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. A , Y >. Cgr <. B , C >. )
23 1 2 3 2 8 19 20 21 22 cgrtr3and
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. A , X >. Cgr <. A , Y >. )
24 16 18 23 jca32
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( ( ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) )
25 simprll
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X Btwn <. A , R >. )
26 simprlr
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> Y Btwn <. A , R >. )
27 simprrr
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> <. A , X >. Cgr <. A , Y >. )
28 midofsegid
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) )
29 1 2 4 3 8 28 syl122anc
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) )
30 29 adantr
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) )
31 25 26 27 30 mp3and
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X = Y )
32 31 exp32
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) -> ( ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) )
33 simprlr
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> Y Btwn <. A , R >. )
34 simprll
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> R Btwn <. A , X >. )
35 1 2 8 4 3 33 34 btwnexchand
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> Y Btwn <. A , X >. )
36 simprrr
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> <. A , X >. Cgr <. A , Y >. )
37 1 2 3 8 35 36 endofsegidand
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X = Y )
38 37 exp32
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) -> ( ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) )
39 simprll
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X Btwn <. A , R >. )
40 simprlr
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> R Btwn <. A , Y >. )
41 1 2 3 4 8 39 40 btwnexchand
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X Btwn <. A , Y >. )
42 simprrr
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> <. A , X >. Cgr <. A , Y >. )
43 1 2 3 2 8 42 cgrcomand
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> <. A , Y >. Cgr <. A , X >. )
44 1 2 8 3 41 43 endofsegidand
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> Y = X )
45 44 eqcomd
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X = Y )
46 45 exp32
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) -> ( ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) )
47 simprr
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) ) -> X Btwn <. A , Y >. )
48 simplrr
 |-  ( ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) -> <. A , X >. Cgr <. A , Y >. )
49 48 adantl
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) ) -> <. A , X >. Cgr <. A , Y >. )
50 1 2 3 2 8 49 cgrcomand
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) ) -> <. A , Y >. Cgr <. A , X >. )
51 1 2 8 3 47 50 endofsegidand
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) ) -> Y = X )
52 51 eqcomd
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) ) -> X = Y )
53 52 expr
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> ( X Btwn <. A , Y >. -> X = Y ) )
54 simprr
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ Y Btwn <. A , X >. ) ) -> Y Btwn <. A , X >. )
55 simplrr
 |-  ( ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ Y Btwn <. A , X >. ) -> <. A , X >. Cgr <. A , Y >. )
56 55 adantl
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ Y Btwn <. A , X >. ) ) -> <. A , X >. Cgr <. A , Y >. )
57 1 2 3 8 54 56 endofsegidand
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ Y Btwn <. A , X >. ) ) -> X = Y )
58 57 expr
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> ( Y Btwn <. A , X >. -> X = Y ) )
59 simprrl
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> R =/= A )
60 59 necomd
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> A =/= R )
61 simprll
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> R Btwn <. A , X >. )
62 simprlr
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> R Btwn <. A , Y >. )
63 btwnconn1
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( A =/= R /\ R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) -> ( X Btwn <. A , Y >. \/ Y Btwn <. A , X >. ) ) )
64 1 2 4 3 8 63 syl122anc
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( A =/= R /\ R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) -> ( X Btwn <. A , Y >. \/ Y Btwn <. A , X >. ) ) )
65 64 adantr
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> ( ( A =/= R /\ R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) -> ( X Btwn <. A , Y >. \/ Y Btwn <. A , X >. ) ) )
66 60 61 62 65 mp3and
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> ( X Btwn <. A , Y >. \/ Y Btwn <. A , X >. ) )
67 53 58 66 mpjaod
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X = Y )
68 67 exp32
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) -> ( ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) )
69 32 38 46 68 ccased
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) -> ( ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) )
70 69 imp32
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X = Y )
71 24 70 syldan
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> X = Y )
72 71 ex
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) -> X = Y ) )
73 12 72 sylbid
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( ( A OutsideOf <. X , R >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A OutsideOf <. Y , R >. /\ <. A , Y >. Cgr <. B , C >. ) ) -> X = Y ) )