| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> N e. NN ) |
| 2 |
|
simp21 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 3 |
|
simp32 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> X e. ( EE ` N ) ) |
| 4 |
|
simp22 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> R e. ( EE ` N ) ) |
| 5 |
|
broutsideof2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ X e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( A OutsideOf <. X , R >. <-> ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) ) ) |
| 6 |
1 2 3 4 5
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( A OutsideOf <. X , R >. <-> ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) ) ) |
| 7 |
6
|
anbi1d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( A OutsideOf <. X , R >. /\ <. A , X >. Cgr <. B , C >. ) <-> ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) ) ) |
| 8 |
|
simp33 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> Y e. ( EE ` N ) ) |
| 9 |
|
broutsideof2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ Y e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( A OutsideOf <. Y , R >. <-> ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) ) ) |
| 10 |
1 2 8 4 9
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( A OutsideOf <. Y , R >. <-> ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) ) ) |
| 11 |
10
|
anbi1d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( A OutsideOf <. Y , R >. /\ <. A , Y >. Cgr <. B , C >. ) <-> ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) |
| 12 |
7 11
|
anbi12d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( ( A OutsideOf <. X , R >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A OutsideOf <. Y , R >. /\ <. A , Y >. Cgr <. B , C >. ) ) <-> ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) ) |
| 13 |
|
simpll3 |
|- ( ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) -> ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) |
| 14 |
|
simprl3 |
|- ( ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) -> ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) |
| 15 |
13 14
|
jca |
|- ( ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) -> ( ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) ) |
| 16 |
15
|
adantl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) ) |
| 17 |
|
simpll2 |
|- ( ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) -> R =/= A ) |
| 18 |
17
|
adantl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> R =/= A ) |
| 19 |
|
simp23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 20 |
|
simp31 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
| 21 |
|
simprlr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. A , X >. Cgr <. B , C >. ) |
| 22 |
|
simprrr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. A , Y >. Cgr <. B , C >. ) |
| 23 |
1 2 3 2 8 19 20 21 22
|
cgrtr3and |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. A , X >. Cgr <. A , Y >. ) |
| 24 |
16 18 23
|
jca32 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( ( ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) |
| 25 |
|
simprll |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X Btwn <. A , R >. ) |
| 26 |
|
simprlr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> Y Btwn <. A , R >. ) |
| 27 |
|
simprrr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> <. A , X >. Cgr <. A , Y >. ) |
| 28 |
|
midofsegid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) |
| 29 |
1 2 4 3 8 28
|
syl122anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) |
| 30 |
29
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) |
| 31 |
25 26 27 30
|
mp3and |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X = Y ) |
| 32 |
31
|
exp32 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) -> ( ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) ) |
| 33 |
|
simprlr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> Y Btwn <. A , R >. ) |
| 34 |
|
simprll |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> R Btwn <. A , X >. ) |
| 35 |
1 2 8 4 3 33 34
|
btwnexchand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> Y Btwn <. A , X >. ) |
| 36 |
|
simprrr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> <. A , X >. Cgr <. A , Y >. ) |
| 37 |
1 2 3 8 35 36
|
endofsegidand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X = Y ) |
| 38 |
37
|
exp32 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) -> ( ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) ) |
| 39 |
|
simprll |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X Btwn <. A , R >. ) |
| 40 |
|
simprlr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> R Btwn <. A , Y >. ) |
| 41 |
1 2 3 4 8 39 40
|
btwnexchand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X Btwn <. A , Y >. ) |
| 42 |
|
simprrr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> <. A , X >. Cgr <. A , Y >. ) |
| 43 |
1 2 3 2 8 42
|
cgrcomand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> <. A , Y >. Cgr <. A , X >. ) |
| 44 |
1 2 8 3 41 43
|
endofsegidand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> Y = X ) |
| 45 |
44
|
eqcomd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X = Y ) |
| 46 |
45
|
exp32 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) -> ( ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) ) |
| 47 |
|
simprr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) ) -> X Btwn <. A , Y >. ) |
| 48 |
|
simplrr |
|- ( ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) -> <. A , X >. Cgr <. A , Y >. ) |
| 49 |
48
|
adantl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) ) -> <. A , X >. Cgr <. A , Y >. ) |
| 50 |
1 2 3 2 8 49
|
cgrcomand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) ) -> <. A , Y >. Cgr <. A , X >. ) |
| 51 |
1 2 8 3 47 50
|
endofsegidand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) ) -> Y = X ) |
| 52 |
51
|
eqcomd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) ) -> X = Y ) |
| 53 |
52
|
expr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> ( X Btwn <. A , Y >. -> X = Y ) ) |
| 54 |
|
simprr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ Y Btwn <. A , X >. ) ) -> Y Btwn <. A , X >. ) |
| 55 |
|
simplrr |
|- ( ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ Y Btwn <. A , X >. ) -> <. A , X >. Cgr <. A , Y >. ) |
| 56 |
55
|
adantl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ Y Btwn <. A , X >. ) ) -> <. A , X >. Cgr <. A , Y >. ) |
| 57 |
1 2 3 8 54 56
|
endofsegidand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ Y Btwn <. A , X >. ) ) -> X = Y ) |
| 58 |
57
|
expr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> ( Y Btwn <. A , X >. -> X = Y ) ) |
| 59 |
|
simprrl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> R =/= A ) |
| 60 |
59
|
necomd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> A =/= R ) |
| 61 |
|
simprll |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> R Btwn <. A , X >. ) |
| 62 |
|
simprlr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> R Btwn <. A , Y >. ) |
| 63 |
|
btwnconn1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( A =/= R /\ R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) -> ( X Btwn <. A , Y >. \/ Y Btwn <. A , X >. ) ) ) |
| 64 |
1 2 4 3 8 63
|
syl122anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( A =/= R /\ R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) -> ( X Btwn <. A , Y >. \/ Y Btwn <. A , X >. ) ) ) |
| 65 |
64
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> ( ( A =/= R /\ R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) -> ( X Btwn <. A , Y >. \/ Y Btwn <. A , X >. ) ) ) |
| 66 |
60 61 62 65
|
mp3and |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> ( X Btwn <. A , Y >. \/ Y Btwn <. A , X >. ) ) |
| 67 |
53 58 66
|
mpjaod |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X = Y ) |
| 68 |
67
|
exp32 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) -> ( ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) ) |
| 69 |
32 38 46 68
|
ccased |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) -> ( ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) ) |
| 70 |
69
|
imp32 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X = Y ) |
| 71 |
24 70
|
syldan |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> X = Y ) |
| 72 |
71
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) -> X = Y ) ) |
| 73 |
12 72
|
sylbid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( ( A OutsideOf <. X , R >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A OutsideOf <. Y , R >. /\ <. A , Y >. Cgr <. B , C >. ) ) -> X = Y ) ) |