| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 2 |  | simp21 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 3 |  | simp32 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> X e. ( EE ` N ) ) | 
						
							| 4 |  | simp22 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> R e. ( EE ` N ) ) | 
						
							| 5 |  | broutsideof2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ X e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( A OutsideOf <. X , R >. <-> ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) ) ) | 
						
							| 6 | 1 2 3 4 5 | syl13anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( A OutsideOf <. X , R >. <-> ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) ) ) | 
						
							| 7 | 6 | anbi1d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( A OutsideOf <. X , R >. /\ <. A , X >. Cgr <. B , C >. ) <-> ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) ) ) | 
						
							| 8 |  | simp33 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> Y e. ( EE ` N ) ) | 
						
							| 9 |  | broutsideof2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ Y e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( A OutsideOf <. Y , R >. <-> ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) ) ) | 
						
							| 10 | 1 2 8 4 9 | syl13anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( A OutsideOf <. Y , R >. <-> ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) ) ) | 
						
							| 11 | 10 | anbi1d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( A OutsideOf <. Y , R >. /\ <. A , Y >. Cgr <. B , C >. ) <-> ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) | 
						
							| 12 | 7 11 | anbi12d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( ( A OutsideOf <. X , R >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A OutsideOf <. Y , R >. /\ <. A , Y >. Cgr <. B , C >. ) ) <-> ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) ) | 
						
							| 13 |  | simpll3 |  |-  ( ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) -> ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) | 
						
							| 14 |  | simprl3 |  |-  ( ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) -> ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) | 
						
							| 15 | 13 14 | jca |  |-  ( ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) -> ( ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) ) | 
						
							| 17 |  | simpll2 |  |-  ( ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) -> R =/= A ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> R =/= A ) | 
						
							| 19 |  | simp23 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 20 |  | simp31 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 21 |  | simprlr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. A , X >. Cgr <. B , C >. ) | 
						
							| 22 |  | simprrr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. A , Y >. Cgr <. B , C >. ) | 
						
							| 23 | 1 2 3 2 8 19 20 21 22 | cgrtr3and |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. A , X >. Cgr <. A , Y >. ) | 
						
							| 24 | 16 18 23 | jca32 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( ( ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) | 
						
							| 25 |  | simprll |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X Btwn <. A , R >. ) | 
						
							| 26 |  | simprlr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> Y Btwn <. A , R >. ) | 
						
							| 27 |  | simprrr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> <. A , X >. Cgr <. A , Y >. ) | 
						
							| 28 |  | midofsegid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) | 
						
							| 29 | 1 2 4 3 8 28 | syl122anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) | 
						
							| 31 | 25 26 27 30 | mp3and |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X = Y ) | 
						
							| 32 | 31 | exp32 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( X Btwn <. A , R >. /\ Y Btwn <. A , R >. ) -> ( ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) ) | 
						
							| 33 |  | simprlr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> Y Btwn <. A , R >. ) | 
						
							| 34 |  | simprll |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> R Btwn <. A , X >. ) | 
						
							| 35 | 1 2 8 4 3 33 34 | btwnexchand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> Y Btwn <. A , X >. ) | 
						
							| 36 |  | simprrr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> <. A , X >. Cgr <. A , Y >. ) | 
						
							| 37 | 1 2 3 8 35 36 | endofsegidand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X = Y ) | 
						
							| 38 | 37 | exp32 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( R Btwn <. A , X >. /\ Y Btwn <. A , R >. ) -> ( ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) ) | 
						
							| 39 |  | simprll |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X Btwn <. A , R >. ) | 
						
							| 40 |  | simprlr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> R Btwn <. A , Y >. ) | 
						
							| 41 | 1 2 3 4 8 39 40 | btwnexchand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X Btwn <. A , Y >. ) | 
						
							| 42 |  | simprrr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> <. A , X >. Cgr <. A , Y >. ) | 
						
							| 43 | 1 2 3 2 8 42 | cgrcomand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> <. A , Y >. Cgr <. A , X >. ) | 
						
							| 44 | 1 2 8 3 41 43 | endofsegidand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> Y = X ) | 
						
							| 45 | 44 | eqcomd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X = Y ) | 
						
							| 46 | 45 | exp32 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( X Btwn <. A , R >. /\ R Btwn <. A , Y >. ) -> ( ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) ) | 
						
							| 47 |  | simprr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) ) -> X Btwn <. A , Y >. ) | 
						
							| 48 |  | simplrr |  |-  ( ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) -> <. A , X >. Cgr <. A , Y >. ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) ) -> <. A , X >. Cgr <. A , Y >. ) | 
						
							| 50 | 1 2 3 2 8 49 | cgrcomand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) ) -> <. A , Y >. Cgr <. A , X >. ) | 
						
							| 51 | 1 2 8 3 47 50 | endofsegidand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) ) -> Y = X ) | 
						
							| 52 | 51 | eqcomd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ X Btwn <. A , Y >. ) ) -> X = Y ) | 
						
							| 53 | 52 | expr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> ( X Btwn <. A , Y >. -> X = Y ) ) | 
						
							| 54 |  | simprr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ Y Btwn <. A , X >. ) ) -> Y Btwn <. A , X >. ) | 
						
							| 55 |  | simplrr |  |-  ( ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ Y Btwn <. A , X >. ) -> <. A , X >. Cgr <. A , Y >. ) | 
						
							| 56 | 55 | adantl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ Y Btwn <. A , X >. ) ) -> <. A , X >. Cgr <. A , Y >. ) | 
						
							| 57 | 1 2 3 8 54 56 | endofsegidand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) /\ Y Btwn <. A , X >. ) ) -> X = Y ) | 
						
							| 58 | 57 | expr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> ( Y Btwn <. A , X >. -> X = Y ) ) | 
						
							| 59 |  | simprrl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> R =/= A ) | 
						
							| 60 | 59 | necomd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> A =/= R ) | 
						
							| 61 |  | simprll |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> R Btwn <. A , X >. ) | 
						
							| 62 |  | simprlr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> R Btwn <. A , Y >. ) | 
						
							| 63 |  | btwnconn1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( A =/= R /\ R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) -> ( X Btwn <. A , Y >. \/ Y Btwn <. A , X >. ) ) ) | 
						
							| 64 | 1 2 4 3 8 63 | syl122anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( A =/= R /\ R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) -> ( X Btwn <. A , Y >. \/ Y Btwn <. A , X >. ) ) ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> ( ( A =/= R /\ R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) -> ( X Btwn <. A , Y >. \/ Y Btwn <. A , X >. ) ) ) | 
						
							| 66 | 60 61 62 65 | mp3and |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> ( X Btwn <. A , Y >. \/ Y Btwn <. A , X >. ) ) | 
						
							| 67 | 53 58 66 | mpjaod |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X = Y ) | 
						
							| 68 | 67 | exp32 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( R Btwn <. A , X >. /\ R Btwn <. A , Y >. ) -> ( ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) ) | 
						
							| 69 | 32 38 46 68 | ccased |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) -> ( ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) -> X = Y ) ) ) | 
						
							| 70 | 69 | imp32 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ ( R =/= A /\ <. A , X >. Cgr <. A , Y >. ) ) ) -> X = Y ) | 
						
							| 71 | 24 70 | syldan |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> X = Y ) | 
						
							| 72 | 71 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( ( ( X =/= A /\ R =/= A /\ ( X Btwn <. A , R >. \/ R Btwn <. A , X >. ) ) /\ <. A , X >. Cgr <. B , C >. ) /\ ( ( Y =/= A /\ R =/= A /\ ( Y Btwn <. A , R >. \/ R Btwn <. A , Y >. ) ) /\ <. A , Y >. Cgr <. B , C >. ) ) -> X = Y ) ) | 
						
							| 73 | 12 72 | sylbid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( ( A OutsideOf <. X , R >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A OutsideOf <. Y , R >. /\ <. A , Y >. Cgr <. B , C >. ) ) -> X = Y ) ) |