Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|
2 |
|
simp21 |
|
3 |
|
simp32 |
|
4 |
|
simp22 |
|
5 |
|
broutsideof2 |
|
6 |
1 2 3 4 5
|
syl13anc |
|
7 |
6
|
anbi1d |
|
8 |
|
simp33 |
|
9 |
|
broutsideof2 |
|
10 |
1 2 8 4 9
|
syl13anc |
|
11 |
10
|
anbi1d |
|
12 |
7 11
|
anbi12d |
|
13 |
|
simpll3 |
|
14 |
|
simprl3 |
|
15 |
13 14
|
jca |
|
16 |
15
|
adantl |
|
17 |
|
simpll2 |
|
18 |
17
|
adantl |
|
19 |
|
simp23 |
|
20 |
|
simp31 |
|
21 |
|
simprlr |
|
22 |
|
simprrr |
|
23 |
1 2 3 2 8 19 20 21 22
|
cgrtr3and |
|
24 |
16 18 23
|
jca32 |
|
25 |
|
simprll |
|
26 |
|
simprlr |
|
27 |
|
simprrr |
|
28 |
|
midofsegid |
|
29 |
1 2 4 3 8 28
|
syl122anc |
|
30 |
29
|
adantr |
|
31 |
25 26 27 30
|
mp3and |
|
32 |
31
|
exp32 |
|
33 |
|
simprlr |
|
34 |
|
simprll |
|
35 |
1 2 8 4 3 33 34
|
btwnexchand |
|
36 |
|
simprrr |
|
37 |
1 2 3 8 35 36
|
endofsegidand |
|
38 |
37
|
exp32 |
|
39 |
|
simprll |
|
40 |
|
simprlr |
|
41 |
1 2 3 4 8 39 40
|
btwnexchand |
|
42 |
|
simprrr |
|
43 |
1 2 3 2 8 42
|
cgrcomand |
|
44 |
1 2 8 3 41 43
|
endofsegidand |
|
45 |
44
|
eqcomd |
|
46 |
45
|
exp32 |
|
47 |
|
simprr |
|
48 |
|
simplrr |
|
49 |
48
|
adantl |
|
50 |
1 2 3 2 8 49
|
cgrcomand |
|
51 |
1 2 8 3 47 50
|
endofsegidand |
|
52 |
51
|
eqcomd |
|
53 |
52
|
expr |
|
54 |
|
simprr |
|
55 |
|
simplrr |
|
56 |
55
|
adantl |
|
57 |
1 2 3 8 54 56
|
endofsegidand |
|
58 |
57
|
expr |
|
59 |
|
simprrl |
|
60 |
59
|
necomd |
|
61 |
|
simprll |
|
62 |
|
simprlr |
|
63 |
|
btwnconn1 |
|
64 |
1 2 4 3 8 63
|
syl122anc |
|
65 |
64
|
adantr |
|
66 |
60 61 62 65
|
mp3and |
|
67 |
53 58 66
|
mpjaod |
|
68 |
67
|
exp32 |
|
69 |
32 38 46 68
|
ccased |
|
70 |
69
|
imp32 |
|
71 |
24 70
|
syldan |
|
72 |
71
|
ex |
|
73 |
12 72
|
sylbid |
|