| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|
| 2 |
|
simp21 |
|
| 3 |
|
simp32 |
|
| 4 |
|
simp22 |
|
| 5 |
|
broutsideof2 |
|
| 6 |
1 2 3 4 5
|
syl13anc |
|
| 7 |
6
|
anbi1d |
|
| 8 |
|
simp33 |
|
| 9 |
|
broutsideof2 |
|
| 10 |
1 2 8 4 9
|
syl13anc |
|
| 11 |
10
|
anbi1d |
|
| 12 |
7 11
|
anbi12d |
|
| 13 |
|
simpll3 |
|
| 14 |
|
simprl3 |
|
| 15 |
13 14
|
jca |
|
| 16 |
15
|
adantl |
|
| 17 |
|
simpll2 |
|
| 18 |
17
|
adantl |
|
| 19 |
|
simp23 |
|
| 20 |
|
simp31 |
|
| 21 |
|
simprlr |
|
| 22 |
|
simprrr |
|
| 23 |
1 2 3 2 8 19 20 21 22
|
cgrtr3and |
|
| 24 |
16 18 23
|
jca32 |
|
| 25 |
|
simprll |
|
| 26 |
|
simprlr |
|
| 27 |
|
simprrr |
|
| 28 |
|
midofsegid |
|
| 29 |
1 2 4 3 8 28
|
syl122anc |
|
| 30 |
29
|
adantr |
|
| 31 |
25 26 27 30
|
mp3and |
|
| 32 |
31
|
exp32 |
|
| 33 |
|
simprlr |
|
| 34 |
|
simprll |
|
| 35 |
1 2 8 4 3 33 34
|
btwnexchand |
|
| 36 |
|
simprrr |
|
| 37 |
1 2 3 8 35 36
|
endofsegidand |
|
| 38 |
37
|
exp32 |
|
| 39 |
|
simprll |
|
| 40 |
|
simprlr |
|
| 41 |
1 2 3 4 8 39 40
|
btwnexchand |
|
| 42 |
|
simprrr |
|
| 43 |
1 2 3 2 8 42
|
cgrcomand |
|
| 44 |
1 2 8 3 41 43
|
endofsegidand |
|
| 45 |
44
|
eqcomd |
|
| 46 |
45
|
exp32 |
|
| 47 |
|
simprr |
|
| 48 |
|
simplrr |
|
| 49 |
48
|
adantl |
|
| 50 |
1 2 3 2 8 49
|
cgrcomand |
|
| 51 |
1 2 8 3 47 50
|
endofsegidand |
|
| 52 |
51
|
eqcomd |
|
| 53 |
52
|
expr |
|
| 54 |
|
simprr |
|
| 55 |
|
simplrr |
|
| 56 |
55
|
adantl |
|
| 57 |
1 2 3 8 54 56
|
endofsegidand |
|
| 58 |
57
|
expr |
|
| 59 |
|
simprrl |
|
| 60 |
59
|
necomd |
|
| 61 |
|
simprll |
|
| 62 |
|
simprlr |
|
| 63 |
|
btwnconn1 |
|
| 64 |
1 2 4 3 8 63
|
syl122anc |
|
| 65 |
64
|
adantr |
|
| 66 |
60 61 62 65
|
mp3and |
|
| 67 |
53 58 66
|
mpjaod |
|
| 68 |
67
|
exp32 |
|
| 69 |
32 38 46 68
|
ccased |
|
| 70 |
69
|
imp32 |
|
| 71 |
24 70
|
syldan |
|
| 72 |
71
|
ex |
|
| 73 |
12 72
|
sylbid |
|