Metamath Proof Explorer


Theorem outsideofeu

Description: Given a nondegenerate ray, there is a unique point congruent to the segment B C lying on the ray A R . Theorem 6.11 of Schwabhauser p. 44. (Contributed by Scott Fenton, 23-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion outsideofeu N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N R A B C ∃! x 𝔼 N A OutsideOf x R A x Cgr B C

Proof

Step Hyp Ref Expression
1 segcon2 N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R Btwn A x x Btwn A R A x Cgr B C
2 1 adantr N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N R A B C x 𝔼 N R Btwn A x x Btwn A R A x Cgr B C
3 simpl1 N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N N
4 simpl2l N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N A 𝔼 N
5 simpr N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N x 𝔼 N
6 simpl2r N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R 𝔼 N
7 broutsideof2 N A 𝔼 N x 𝔼 N R 𝔼 N A OutsideOf x R x A R A x Btwn A R R Btwn A x
8 3 4 5 6 7 syl13anc N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N A OutsideOf x R x A R A x Btwn A R R Btwn A x
9 8 adantr N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R A B C A x Cgr B C A OutsideOf x R x A R A x Btwn A R R Btwn A x
10 simp3 x A R A x Btwn A R R Btwn A x x Btwn A R R Btwn A x
11 simpllr R A B C A x Cgr B C x Btwn A R R Btwn A x B C
12 11 adantl N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R A B C A x Cgr B C x Btwn A R R Btwn A x B C
13 simprlr N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R A B C A x Cgr B C x Btwn A R R Btwn A x A x Cgr B C
14 simp2l N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N
15 14 anim1i N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N A 𝔼 N x 𝔼 N
16 simpl3 N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N B 𝔼 N C 𝔼 N
17 cgrdegen N A 𝔼 N x 𝔼 N B 𝔼 N C 𝔼 N A x Cgr B C A = x B = C
18 3 15 16 17 syl3anc N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N A x Cgr B C A = x B = C
19 18 adantr N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R A B C A x Cgr B C x Btwn A R R Btwn A x A x Cgr B C A = x B = C
20 13 19 mpd N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R A B C A x Cgr B C x Btwn A R R Btwn A x A = x B = C
21 20 necon3bid N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R A B C A x Cgr B C x Btwn A R R Btwn A x A x B C
22 12 21 mpbird N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R A B C A x Cgr B C x Btwn A R R Btwn A x A x
23 22 necomd N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R A B C A x Cgr B C x Btwn A R R Btwn A x x A
24 simplll R A B C A x Cgr B C x Btwn A R R Btwn A x R A
25 24 adantl N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R A B C A x Cgr B C x Btwn A R R Btwn A x R A
26 simprr N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R A B C A x Cgr B C x Btwn A R R Btwn A x x Btwn A R R Btwn A x
27 23 25 26 3jca N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R A B C A x Cgr B C x Btwn A R R Btwn A x x A R A x Btwn A R R Btwn A x
28 27 expr N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R A B C A x Cgr B C x Btwn A R R Btwn A x x A R A x Btwn A R R Btwn A x
29 10 28 impbid2 N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R A B C A x Cgr B C x A R A x Btwn A R R Btwn A x x Btwn A R R Btwn A x
30 9 29 bitrd N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R A B C A x Cgr B C A OutsideOf x R x Btwn A R R Btwn A x
31 orcom x Btwn A R R Btwn A x R Btwn A x x Btwn A R
32 30 31 bitrdi N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R A B C A x Cgr B C A OutsideOf x R R Btwn A x x Btwn A R
33 32 expr N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R A B C A x Cgr B C A OutsideOf x R R Btwn A x x Btwn A R
34 33 pm5.32rd N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N R A B C A OutsideOf x R A x Cgr B C R Btwn A x x Btwn A R A x Cgr B C
35 34 an32s N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N R A B C x 𝔼 N A OutsideOf x R A x Cgr B C R Btwn A x x Btwn A R A x Cgr B C
36 35 rexbidva N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N R A B C x 𝔼 N A OutsideOf x R A x Cgr B C x 𝔼 N R Btwn A x x Btwn A R A x Cgr B C
37 2 36 mpbird N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N R A B C x 𝔼 N A OutsideOf x R A x Cgr B C
38 simpl1 N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N y 𝔼 N N
39 simpl2l N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N y 𝔼 N A 𝔼 N
40 simpl2r N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N y 𝔼 N R 𝔼 N
41 simpl3l N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N y 𝔼 N B 𝔼 N
42 39 40 41 3jca N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N y 𝔼 N A 𝔼 N R 𝔼 N B 𝔼 N
43 simpl3r N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N y 𝔼 N C 𝔼 N
44 simprl N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N y 𝔼 N x 𝔼 N
45 simprr N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N y 𝔼 N y 𝔼 N
46 43 44 45 3jca N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N y 𝔼 N C 𝔼 N x 𝔼 N y 𝔼 N
47 38 42 46 3jca N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N y 𝔼 N N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N y 𝔼 N
48 simpr R A B C A OutsideOf x R A x Cgr B C A OutsideOf y R A y Cgr B C A OutsideOf x R A x Cgr B C A OutsideOf y R A y Cgr B C
49 outsideofeq N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N y 𝔼 N A OutsideOf x R A x Cgr B C A OutsideOf y R A y Cgr B C x = y
50 49 imp N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N y 𝔼 N A OutsideOf x R A x Cgr B C A OutsideOf y R A y Cgr B C x = y
51 47 48 50 syl2an N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N y 𝔼 N R A B C A OutsideOf x R A x Cgr B C A OutsideOf y R A y Cgr B C x = y
52 51 an4s N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N R A B C x 𝔼 N y 𝔼 N A OutsideOf x R A x Cgr B C A OutsideOf y R A y Cgr B C x = y
53 52 exp32 N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N R A B C x 𝔼 N y 𝔼 N A OutsideOf x R A x Cgr B C A OutsideOf y R A y Cgr B C x = y
54 53 ralrimivv N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N R A B C x 𝔼 N y 𝔼 N A OutsideOf x R A x Cgr B C A OutsideOf y R A y Cgr B C x = y
55 opeq1 x = y x R = y R
56 55 breq2d x = y A OutsideOf x R A OutsideOf y R
57 opeq2 x = y A x = A y
58 57 breq1d x = y A x Cgr B C A y Cgr B C
59 56 58 anbi12d x = y A OutsideOf x R A x Cgr B C A OutsideOf y R A y Cgr B C
60 59 reu4 ∃! x 𝔼 N A OutsideOf x R A x Cgr B C x 𝔼 N A OutsideOf x R A x Cgr B C x 𝔼 N y 𝔼 N A OutsideOf x R A x Cgr B C A OutsideOf y R A y Cgr B C x = y
61 37 54 60 sylanbrc N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N R A B C ∃! x 𝔼 N A OutsideOf x R A x Cgr B C
62 61 ex N A 𝔼 N R 𝔼 N B 𝔼 N C 𝔼 N R A B C ∃! x 𝔼 N A OutsideOf x R A x Cgr B C