Step |
Hyp |
Ref |
Expression |
1 |
|
segcon2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( ( R Btwn <. A , x >. \/ x Btwn <. A , R >. ) /\ <. A , x >. Cgr <. B , C >. ) ) |
2 |
1
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( R =/= A /\ B =/= C ) ) -> E. x e. ( EE ` N ) ( ( R Btwn <. A , x >. \/ x Btwn <. A , R >. ) /\ <. A , x >. Cgr <. B , C >. ) ) |
3 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> N e. NN ) |
4 |
|
simpl2l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
5 |
|
simpr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) |
6 |
|
simpl2r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> R e. ( EE ` N ) ) |
7 |
|
broutsideof2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ x e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( A OutsideOf <. x , R >. <-> ( x =/= A /\ R =/= A /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) ) |
8 |
3 4 5 6 7
|
syl13anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( A OutsideOf <. x , R >. <-> ( x =/= A /\ R =/= A /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) ) |
9 |
8
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) ) -> ( A OutsideOf <. x , R >. <-> ( x =/= A /\ R =/= A /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) ) |
10 |
|
simp3 |
|- ( ( x =/= A /\ R =/= A /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) -> ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) |
11 |
|
simpllr |
|- ( ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) -> B =/= C ) |
12 |
11
|
adantl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> B =/= C ) |
13 |
|
simprlr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> <. A , x >. Cgr <. B , C >. ) |
14 |
|
simp2l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
15 |
14
|
anim1i |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) |
16 |
|
simpl3 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
17 |
|
cgrdegen |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ x e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , x >. Cgr <. B , C >. -> ( A = x <-> B = C ) ) ) |
18 |
3 15 16 17
|
syl3anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( <. A , x >. Cgr <. B , C >. -> ( A = x <-> B = C ) ) ) |
19 |
18
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> ( <. A , x >. Cgr <. B , C >. -> ( A = x <-> B = C ) ) ) |
20 |
13 19
|
mpd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> ( A = x <-> B = C ) ) |
21 |
20
|
necon3bid |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> ( A =/= x <-> B =/= C ) ) |
22 |
12 21
|
mpbird |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> A =/= x ) |
23 |
22
|
necomd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> x =/= A ) |
24 |
|
simplll |
|- ( ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) -> R =/= A ) |
25 |
24
|
adantl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> R =/= A ) |
26 |
|
simprr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) |
27 |
23 25 26
|
3jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> ( x =/= A /\ R =/= A /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) |
28 |
27
|
expr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) ) -> ( ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) -> ( x =/= A /\ R =/= A /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) ) |
29 |
10 28
|
impbid2 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) ) -> ( ( x =/= A /\ R =/= A /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) <-> ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) |
30 |
9 29
|
bitrd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) ) -> ( A OutsideOf <. x , R >. <-> ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) |
31 |
|
orcom |
|- ( ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) <-> ( R Btwn <. A , x >. \/ x Btwn <. A , R >. ) ) |
32 |
30 31
|
bitrdi |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) ) -> ( A OutsideOf <. x , R >. <-> ( R Btwn <. A , x >. \/ x Btwn <. A , R >. ) ) ) |
33 |
32
|
expr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( R =/= A /\ B =/= C ) ) -> ( <. A , x >. Cgr <. B , C >. -> ( A OutsideOf <. x , R >. <-> ( R Btwn <. A , x >. \/ x Btwn <. A , R >. ) ) ) ) |
34 |
33
|
pm5.32rd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( R =/= A /\ B =/= C ) ) -> ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) <-> ( ( R Btwn <. A , x >. \/ x Btwn <. A , R >. ) /\ <. A , x >. Cgr <. B , C >. ) ) ) |
35 |
34
|
an32s |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( R =/= A /\ B =/= C ) ) /\ x e. ( EE ` N ) ) -> ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) <-> ( ( R Btwn <. A , x >. \/ x Btwn <. A , R >. ) /\ <. A , x >. Cgr <. B , C >. ) ) ) |
36 |
35
|
rexbidva |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( R =/= A /\ B =/= C ) ) -> ( E. x e. ( EE ` N ) ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) <-> E. x e. ( EE ` N ) ( ( R Btwn <. A , x >. \/ x Btwn <. A , R >. ) /\ <. A , x >. Cgr <. B , C >. ) ) ) |
37 |
2 36
|
mpbird |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( R =/= A /\ B =/= C ) ) -> E. x e. ( EE ` N ) ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) ) |
38 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> N e. NN ) |
39 |
|
simpl2l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
40 |
|
simpl2r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> R e. ( EE ` N ) ) |
41 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
42 |
39 40 41
|
3jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) |
43 |
|
simpl3r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
44 |
|
simprl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> x e. ( EE ` N ) ) |
45 |
|
simprr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> y e. ( EE ` N ) ) |
46 |
43 44 45
|
3jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( C e. ( EE ` N ) /\ x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) |
47 |
38 42 46
|
3jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) ) |
48 |
|
simpr |
|- ( ( ( R =/= A /\ B =/= C ) /\ ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) ) -> ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) ) |
49 |
|
outsideofeq |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) -> x = y ) ) |
50 |
49
|
imp |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) /\ ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) ) -> x = y ) |
51 |
47 48 50
|
syl2an |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) /\ ( ( R =/= A /\ B =/= C ) /\ ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) ) ) -> x = y ) |
52 |
51
|
an4s |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( R =/= A /\ B =/= C ) ) /\ ( ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) /\ ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) ) ) -> x = y ) |
53 |
52
|
exp32 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( R =/= A /\ B =/= C ) ) -> ( ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) -> ( ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) -> x = y ) ) ) |
54 |
53
|
ralrimivv |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( R =/= A /\ B =/= C ) ) -> A. x e. ( EE ` N ) A. y e. ( EE ` N ) ( ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) -> x = y ) ) |
55 |
|
opeq1 |
|- ( x = y -> <. x , R >. = <. y , R >. ) |
56 |
55
|
breq2d |
|- ( x = y -> ( A OutsideOf <. x , R >. <-> A OutsideOf <. y , R >. ) ) |
57 |
|
opeq2 |
|- ( x = y -> <. A , x >. = <. A , y >. ) |
58 |
57
|
breq1d |
|- ( x = y -> ( <. A , x >. Cgr <. B , C >. <-> <. A , y >. Cgr <. B , C >. ) ) |
59 |
56 58
|
anbi12d |
|- ( x = y -> ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) <-> ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) ) |
60 |
59
|
reu4 |
|- ( E! x e. ( EE ` N ) ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) <-> ( E. x e. ( EE ` N ) ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ A. x e. ( EE ` N ) A. y e. ( EE ` N ) ( ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) -> x = y ) ) ) |
61 |
37 54 60
|
sylanbrc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( R =/= A /\ B =/= C ) ) -> E! x e. ( EE ` N ) ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) ) |
62 |
61
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( R =/= A /\ B =/= C ) -> E! x e. ( EE ` N ) ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) ) ) |