| Step | Hyp | Ref | Expression | 
						
							| 1 |  | segcon2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( ( R Btwn <. A , x >. \/ x Btwn <. A , R >. ) /\ <. A , x >. Cgr <. B , C >. ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( R =/= A /\ B =/= C ) ) -> E. x e. ( EE ` N ) ( ( R Btwn <. A , x >. \/ x Btwn <. A , R >. ) /\ <. A , x >. Cgr <. B , C >. ) ) | 
						
							| 3 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 4 |  | simpl2l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 5 |  | simpr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) | 
						
							| 6 |  | simpl2r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> R e. ( EE ` N ) ) | 
						
							| 7 |  | broutsideof2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ x e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( A OutsideOf <. x , R >. <-> ( x =/= A /\ R =/= A /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) ) | 
						
							| 8 | 3 4 5 6 7 | syl13anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( A OutsideOf <. x , R >. <-> ( x =/= A /\ R =/= A /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) ) -> ( A OutsideOf <. x , R >. <-> ( x =/= A /\ R =/= A /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) ) | 
						
							| 10 |  | simp3 |  |-  ( ( x =/= A /\ R =/= A /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) -> ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) | 
						
							| 11 |  | simpllr |  |-  ( ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) -> B =/= C ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> B =/= C ) | 
						
							| 13 |  | simprlr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> <. A , x >. Cgr <. B , C >. ) | 
						
							| 14 |  | simp2l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 15 | 14 | anim1i |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) | 
						
							| 16 |  | simpl3 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) | 
						
							| 17 |  | cgrdegen |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ x e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , x >. Cgr <. B , C >. -> ( A = x <-> B = C ) ) ) | 
						
							| 18 | 3 15 16 17 | syl3anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( <. A , x >. Cgr <. B , C >. -> ( A = x <-> B = C ) ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> ( <. A , x >. Cgr <. B , C >. -> ( A = x <-> B = C ) ) ) | 
						
							| 20 | 13 19 | mpd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> ( A = x <-> B = C ) ) | 
						
							| 21 | 20 | necon3bid |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> ( A =/= x <-> B =/= C ) ) | 
						
							| 22 | 12 21 | mpbird |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> A =/= x ) | 
						
							| 23 | 22 | necomd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> x =/= A ) | 
						
							| 24 |  | simplll |  |-  ( ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) -> R =/= A ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> R =/= A ) | 
						
							| 26 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) | 
						
							| 27 | 23 25 26 | 3jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) -> ( x =/= A /\ R =/= A /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) | 
						
							| 28 | 27 | expr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) ) -> ( ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) -> ( x =/= A /\ R =/= A /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) ) | 
						
							| 29 | 10 28 | impbid2 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) ) -> ( ( x =/= A /\ R =/= A /\ ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) <-> ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) | 
						
							| 30 | 9 29 | bitrd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) ) -> ( A OutsideOf <. x , R >. <-> ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) ) ) | 
						
							| 31 |  | orcom |  |-  ( ( x Btwn <. A , R >. \/ R Btwn <. A , x >. ) <-> ( R Btwn <. A , x >. \/ x Btwn <. A , R >. ) ) | 
						
							| 32 | 30 31 | bitrdi |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( R =/= A /\ B =/= C ) /\ <. A , x >. Cgr <. B , C >. ) ) -> ( A OutsideOf <. x , R >. <-> ( R Btwn <. A , x >. \/ x Btwn <. A , R >. ) ) ) | 
						
							| 33 | 32 | expr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( R =/= A /\ B =/= C ) ) -> ( <. A , x >. Cgr <. B , C >. -> ( A OutsideOf <. x , R >. <-> ( R Btwn <. A , x >. \/ x Btwn <. A , R >. ) ) ) ) | 
						
							| 34 | 33 | pm5.32rd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( R =/= A /\ B =/= C ) ) -> ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) <-> ( ( R Btwn <. A , x >. \/ x Btwn <. A , R >. ) /\ <. A , x >. Cgr <. B , C >. ) ) ) | 
						
							| 35 | 34 | an32s |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( R =/= A /\ B =/= C ) ) /\ x e. ( EE ` N ) ) -> ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) <-> ( ( R Btwn <. A , x >. \/ x Btwn <. A , R >. ) /\ <. A , x >. Cgr <. B , C >. ) ) ) | 
						
							| 36 | 35 | rexbidva |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( R =/= A /\ B =/= C ) ) -> ( E. x e. ( EE ` N ) ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) <-> E. x e. ( EE ` N ) ( ( R Btwn <. A , x >. \/ x Btwn <. A , R >. ) /\ <. A , x >. Cgr <. B , C >. ) ) ) | 
						
							| 37 | 2 36 | mpbird |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( R =/= A /\ B =/= C ) ) -> E. x e. ( EE ` N ) ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) ) | 
						
							| 38 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 39 |  | simpl2l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 40 |  | simpl2r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> R e. ( EE ` N ) ) | 
						
							| 41 |  | simpl3l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 42 | 39 40 41 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) | 
						
							| 43 |  | simpl3r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 44 |  | simprl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> x e. ( EE ` N ) ) | 
						
							| 45 |  | simprr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> y e. ( EE ` N ) ) | 
						
							| 46 | 43 44 45 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( C e. ( EE ` N ) /\ x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) | 
						
							| 47 | 38 42 46 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) ) | 
						
							| 48 |  | simpr |  |-  ( ( ( R =/= A /\ B =/= C ) /\ ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) ) -> ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) ) | 
						
							| 49 |  | outsideofeq |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) -> x = y ) ) | 
						
							| 50 | 49 | imp |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) /\ ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) ) -> x = y ) | 
						
							| 51 | 47 48 50 | syl2an |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) /\ ( ( R =/= A /\ B =/= C ) /\ ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) ) ) -> x = y ) | 
						
							| 52 | 51 | an4s |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( R =/= A /\ B =/= C ) ) /\ ( ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) /\ ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) ) ) -> x = y ) | 
						
							| 53 | 52 | exp32 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( R =/= A /\ B =/= C ) ) -> ( ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) -> ( ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) -> x = y ) ) ) | 
						
							| 54 | 53 | ralrimivv |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( R =/= A /\ B =/= C ) ) -> A. x e. ( EE ` N ) A. y e. ( EE ` N ) ( ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) -> x = y ) ) | 
						
							| 55 |  | opeq1 |  |-  ( x = y -> <. x , R >. = <. y , R >. ) | 
						
							| 56 | 55 | breq2d |  |-  ( x = y -> ( A OutsideOf <. x , R >. <-> A OutsideOf <. y , R >. ) ) | 
						
							| 57 |  | opeq2 |  |-  ( x = y -> <. A , x >. = <. A , y >. ) | 
						
							| 58 | 57 | breq1d |  |-  ( x = y -> ( <. A , x >. Cgr <. B , C >. <-> <. A , y >. Cgr <. B , C >. ) ) | 
						
							| 59 | 56 58 | anbi12d |  |-  ( x = y -> ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) <-> ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) ) | 
						
							| 60 | 59 | reu4 |  |-  ( E! x e. ( EE ` N ) ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) <-> ( E. x e. ( EE ` N ) ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ A. x e. ( EE ` N ) A. y e. ( EE ` N ) ( ( ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) /\ ( A OutsideOf <. y , R >. /\ <. A , y >. Cgr <. B , C >. ) ) -> x = y ) ) ) | 
						
							| 61 | 37 54 60 | sylanbrc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( R =/= A /\ B =/= C ) ) -> E! x e. ( EE ` N ) ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) ) | 
						
							| 62 | 61 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( R =/= A /\ B =/= C ) -> E! x e. ( EE ` N ) ( A OutsideOf <. x , R >. /\ <. A , x >. Cgr <. B , C >. ) ) ) |