| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 2 |  | simpr1 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> P e. ( EE ` N ) ) | 
						
							| 3 |  | simpr2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 4 |  | simpr3 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 5 |  | brsegle2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( <. P , A >. Seg<_ <. P , B >. <-> E. y e. ( EE ` N ) ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) | 
						
							| 6 | 1 2 3 2 4 5 | syl122anc |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( <. P , A >. Seg<_ <. P , B >. <-> E. y e. ( EE ` N ) ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ P OutsideOf <. A , B >. ) -> ( <. P , A >. Seg<_ <. P , B >. <-> E. y e. ( EE ` N ) ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) | 
						
							| 8 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> P OutsideOf <. A , B >. ) | 
						
							| 9 |  | outsideofcom |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> P OutsideOf <. B , A >. ) ) | 
						
							| 10 | 9 | ad2antrr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> ( P OutsideOf <. A , B >. <-> P OutsideOf <. B , A >. ) ) | 
						
							| 11 | 8 10 | mpbid |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> P OutsideOf <. B , A >. ) | 
						
							| 12 |  | simpll |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 13 |  | simplr1 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> P e. ( EE ` N ) ) | 
						
							| 14 |  | simplr3 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 15 | 12 13 14 | cgrrflxd |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> <. P , B >. Cgr <. P , B >. ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> <. P , B >. Cgr <. P , B >. ) | 
						
							| 17 | 11 16 | jca |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> ( P OutsideOf <. B , A >. /\ <. P , B >. Cgr <. P , B >. ) ) | 
						
							| 18 |  | simprrl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> A Btwn <. P , y >. ) | 
						
							| 19 |  | simpr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> y e. ( EE ` N ) ) | 
						
							| 20 |  | simplr2 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 21 |  | btwncolinear1 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ y e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( A Btwn <. P , y >. -> P Colinear <. y , A >. ) ) | 
						
							| 22 | 12 13 19 20 21 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> ( A Btwn <. P , y >. -> P Colinear <. y , A >. ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> ( A Btwn <. P , y >. -> P Colinear <. y , A >. ) ) | 
						
							| 24 | 18 23 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> P Colinear <. y , A >. ) | 
						
							| 25 |  | outsidene1 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. -> A =/= P ) ) | 
						
							| 26 | 25 | ad2antrr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> ( P OutsideOf <. A , B >. -> A =/= P ) ) | 
						
							| 27 | 8 26 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> A =/= P ) | 
						
							| 28 | 27 | neneqd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> -. A = P ) | 
						
							| 29 |  | df-3an |  |-  ( ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) /\ P Btwn <. y , A >. ) <-> ( ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) /\ P Btwn <. y , A >. ) ) | 
						
							| 30 |  | simpr2l |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) /\ P Btwn <. y , A >. ) ) -> A Btwn <. P , y >. ) | 
						
							| 31 | 12 20 13 19 30 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) /\ P Btwn <. y , A >. ) ) -> A Btwn <. y , P >. ) | 
						
							| 32 |  | simpr3 |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) /\ P Btwn <. y , A >. ) ) -> P Btwn <. y , A >. ) | 
						
							| 33 |  | btwnswapid2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ y e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( A Btwn <. y , P >. /\ P Btwn <. y , A >. ) -> A = P ) ) | 
						
							| 34 | 12 20 19 13 33 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> ( ( A Btwn <. y , P >. /\ P Btwn <. y , A >. ) -> A = P ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) /\ P Btwn <. y , A >. ) ) -> ( ( A Btwn <. y , P >. /\ P Btwn <. y , A >. ) -> A = P ) ) | 
						
							| 36 | 31 32 35 | mp2and |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) /\ P Btwn <. y , A >. ) ) -> A = P ) | 
						
							| 37 | 29 36 | sylan2br |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) /\ P Btwn <. y , A >. ) ) -> A = P ) | 
						
							| 38 | 37 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> ( P Btwn <. y , A >. -> A = P ) ) | 
						
							| 39 | 28 38 | mtod |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> -. P Btwn <. y , A >. ) | 
						
							| 40 |  | broutsideof |  |-  ( P OutsideOf <. y , A >. <-> ( P Colinear <. y , A >. /\ -. P Btwn <. y , A >. ) ) | 
						
							| 41 | 24 39 40 | sylanbrc |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> P OutsideOf <. y , A >. ) | 
						
							| 42 |  | simprrr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> <. P , y >. Cgr <. P , B >. ) | 
						
							| 43 | 41 42 | jca |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> ( P OutsideOf <. y , A >. /\ <. P , y >. Cgr <. P , B >. ) ) | 
						
							| 44 |  | outsideofeq |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ B e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( ( ( P OutsideOf <. B , A >. /\ <. P , B >. Cgr <. P , B >. ) /\ ( P OutsideOf <. y , A >. /\ <. P , y >. Cgr <. P , B >. ) ) -> B = y ) ) | 
						
							| 45 | 12 13 20 13 14 14 19 44 | syl133anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> ( ( ( P OutsideOf <. B , A >. /\ <. P , B >. Cgr <. P , B >. ) /\ ( P OutsideOf <. y , A >. /\ <. P , y >. Cgr <. P , B >. ) ) -> B = y ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> ( ( ( P OutsideOf <. B , A >. /\ <. P , B >. Cgr <. P , B >. ) /\ ( P OutsideOf <. y , A >. /\ <. P , y >. Cgr <. P , B >. ) ) -> B = y ) ) | 
						
							| 47 | 17 43 46 | mp2and |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> B = y ) | 
						
							| 48 |  | opeq2 |  |-  ( B = y -> <. P , B >. = <. P , y >. ) | 
						
							| 49 | 48 | breq2d |  |-  ( B = y -> ( A Btwn <. P , B >. <-> A Btwn <. P , y >. ) ) | 
						
							| 50 | 18 49 | syl5ibrcom |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> ( B = y -> A Btwn <. P , B >. ) ) | 
						
							| 51 | 47 50 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> A Btwn <. P , B >. ) | 
						
							| 52 | 51 | an4s |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ P OutsideOf <. A , B >. ) /\ ( y e. ( EE ` N ) /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> A Btwn <. P , B >. ) | 
						
							| 53 | 52 | rexlimdvaa |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ P OutsideOf <. A , B >. ) -> ( E. y e. ( EE ` N ) ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) -> A Btwn <. P , B >. ) ) | 
						
							| 54 | 7 53 | sylbid |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ P OutsideOf <. A , B >. ) -> ( <. P , A >. Seg<_ <. P , B >. -> A Btwn <. P , B >. ) ) | 
						
							| 55 |  | btwnsegle |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A Btwn <. P , B >. -> <. P , A >. Seg<_ <. P , B >. ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ P OutsideOf <. A , B >. ) -> ( A Btwn <. P , B >. -> <. P , A >. Seg<_ <. P , B >. ) ) | 
						
							| 57 | 54 56 | impbid |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ P OutsideOf <. A , B >. ) -> ( <. P , A >. Seg<_ <. P , B >. <-> A Btwn <. P , B >. ) ) | 
						
							| 58 | 57 | ex |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. -> ( <. P , A >. Seg<_ <. P , B >. <-> A Btwn <. P , B >. ) ) ) |