Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> N e. NN ) |
2 |
|
simpr1 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> P e. ( EE ` N ) ) |
3 |
|
simpr2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
4 |
|
simpr3 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
5 |
|
brsegle2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( <. P , A >. Seg<_ <. P , B >. <-> E. y e. ( EE ` N ) ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) |
6 |
1 2 3 2 4 5
|
syl122anc |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( <. P , A >. Seg<_ <. P , B >. <-> E. y e. ( EE ` N ) ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) |
7 |
6
|
adantr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ P OutsideOf <. A , B >. ) -> ( <. P , A >. Seg<_ <. P , B >. <-> E. y e. ( EE ` N ) ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) |
8 |
|
simprl |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> P OutsideOf <. A , B >. ) |
9 |
|
outsideofcom |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> P OutsideOf <. B , A >. ) ) |
10 |
9
|
ad2antrr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> ( P OutsideOf <. A , B >. <-> P OutsideOf <. B , A >. ) ) |
11 |
8 10
|
mpbid |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> P OutsideOf <. B , A >. ) |
12 |
|
simpll |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> N e. NN ) |
13 |
|
simplr1 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> P e. ( EE ` N ) ) |
14 |
|
simplr3 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
15 |
12 13 14
|
cgrrflxd |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> <. P , B >. Cgr <. P , B >. ) |
16 |
15
|
adantr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> <. P , B >. Cgr <. P , B >. ) |
17 |
11 16
|
jca |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> ( P OutsideOf <. B , A >. /\ <. P , B >. Cgr <. P , B >. ) ) |
18 |
|
simprrl |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> A Btwn <. P , y >. ) |
19 |
|
simpr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> y e. ( EE ` N ) ) |
20 |
|
simplr2 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
21 |
|
btwncolinear1 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ y e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( A Btwn <. P , y >. -> P Colinear <. y , A >. ) ) |
22 |
12 13 19 20 21
|
syl13anc |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> ( A Btwn <. P , y >. -> P Colinear <. y , A >. ) ) |
23 |
22
|
adantr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> ( A Btwn <. P , y >. -> P Colinear <. y , A >. ) ) |
24 |
18 23
|
mpd |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> P Colinear <. y , A >. ) |
25 |
|
outsidene1 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. -> A =/= P ) ) |
26 |
25
|
ad2antrr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> ( P OutsideOf <. A , B >. -> A =/= P ) ) |
27 |
8 26
|
mpd |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> A =/= P ) |
28 |
27
|
neneqd |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> -. A = P ) |
29 |
|
df-3an |
|- ( ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) /\ P Btwn <. y , A >. ) <-> ( ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) /\ P Btwn <. y , A >. ) ) |
30 |
|
simpr2l |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) /\ P Btwn <. y , A >. ) ) -> A Btwn <. P , y >. ) |
31 |
12 20 13 19 30
|
btwncomand |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) /\ P Btwn <. y , A >. ) ) -> A Btwn <. y , P >. ) |
32 |
|
simpr3 |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) /\ P Btwn <. y , A >. ) ) -> P Btwn <. y , A >. ) |
33 |
|
btwnswapid2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ y e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( A Btwn <. y , P >. /\ P Btwn <. y , A >. ) -> A = P ) ) |
34 |
12 20 19 13 33
|
syl13anc |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> ( ( A Btwn <. y , P >. /\ P Btwn <. y , A >. ) -> A = P ) ) |
35 |
34
|
adantr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) /\ P Btwn <. y , A >. ) ) -> ( ( A Btwn <. y , P >. /\ P Btwn <. y , A >. ) -> A = P ) ) |
36 |
31 32 35
|
mp2and |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) /\ P Btwn <. y , A >. ) ) -> A = P ) |
37 |
29 36
|
sylan2br |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) /\ P Btwn <. y , A >. ) ) -> A = P ) |
38 |
37
|
expr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> ( P Btwn <. y , A >. -> A = P ) ) |
39 |
28 38
|
mtod |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> -. P Btwn <. y , A >. ) |
40 |
|
broutsideof |
|- ( P OutsideOf <. y , A >. <-> ( P Colinear <. y , A >. /\ -. P Btwn <. y , A >. ) ) |
41 |
24 39 40
|
sylanbrc |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> P OutsideOf <. y , A >. ) |
42 |
|
simprrr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> <. P , y >. Cgr <. P , B >. ) |
43 |
41 42
|
jca |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> ( P OutsideOf <. y , A >. /\ <. P , y >. Cgr <. P , B >. ) ) |
44 |
|
outsideofeq |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ B e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( ( ( P OutsideOf <. B , A >. /\ <. P , B >. Cgr <. P , B >. ) /\ ( P OutsideOf <. y , A >. /\ <. P , y >. Cgr <. P , B >. ) ) -> B = y ) ) |
45 |
12 13 20 13 14 14 19 44
|
syl133anc |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> ( ( ( P OutsideOf <. B , A >. /\ <. P , B >. Cgr <. P , B >. ) /\ ( P OutsideOf <. y , A >. /\ <. P , y >. Cgr <. P , B >. ) ) -> B = y ) ) |
46 |
45
|
adantr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> ( ( ( P OutsideOf <. B , A >. /\ <. P , B >. Cgr <. P , B >. ) /\ ( P OutsideOf <. y , A >. /\ <. P , y >. Cgr <. P , B >. ) ) -> B = y ) ) |
47 |
17 43 46
|
mp2and |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> B = y ) |
48 |
|
opeq2 |
|- ( B = y -> <. P , B >. = <. P , y >. ) |
49 |
48
|
breq2d |
|- ( B = y -> ( A Btwn <. P , B >. <-> A Btwn <. P , y >. ) ) |
50 |
18 49
|
syl5ibrcom |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> ( B = y -> A Btwn <. P , B >. ) ) |
51 |
47 50
|
mpd |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( P OutsideOf <. A , B >. /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> A Btwn <. P , B >. ) |
52 |
51
|
an4s |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ P OutsideOf <. A , B >. ) /\ ( y e. ( EE ` N ) /\ ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) ) ) -> A Btwn <. P , B >. ) |
53 |
52
|
rexlimdvaa |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ P OutsideOf <. A , B >. ) -> ( E. y e. ( EE ` N ) ( A Btwn <. P , y >. /\ <. P , y >. Cgr <. P , B >. ) -> A Btwn <. P , B >. ) ) |
54 |
7 53
|
sylbid |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ P OutsideOf <. A , B >. ) -> ( <. P , A >. Seg<_ <. P , B >. -> A Btwn <. P , B >. ) ) |
55 |
|
btwnsegle |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A Btwn <. P , B >. -> <. P , A >. Seg<_ <. P , B >. ) ) |
56 |
55
|
adantr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ P OutsideOf <. A , B >. ) -> ( A Btwn <. P , B >. -> <. P , A >. Seg<_ <. P , B >. ) ) |
57 |
54 56
|
impbid |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ P OutsideOf <. A , B >. ) -> ( <. P , A >. Seg<_ <. P , B >. <-> A Btwn <. P , B >. ) ) |
58 |
57
|
ex |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. -> ( <. P , A >. Seg<_ <. P , B >. <-> A Btwn <. P , B >. ) ) ) |