Step |
Hyp |
Ref |
Expression |
1 |
|
simplr2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ B Btwn <. A , C >. ) -> B e. ( EE ` N ) ) |
2 |
|
simpr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ B Btwn <. A , C >. ) -> B Btwn <. A , C >. ) |
3 |
|
simpl |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> N e. NN ) |
4 |
|
simpr1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
5 |
|
simpr2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
6 |
3 4 5
|
cgrrflxd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. A , B >. Cgr <. A , B >. ) |
7 |
6
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ B Btwn <. A , C >. ) -> <. A , B >. Cgr <. A , B >. ) |
8 |
|
breq1 |
|- ( x = B -> ( x Btwn <. A , C >. <-> B Btwn <. A , C >. ) ) |
9 |
|
opeq2 |
|- ( x = B -> <. A , x >. = <. A , B >. ) |
10 |
9
|
breq2d |
|- ( x = B -> ( <. A , B >. Cgr <. A , x >. <-> <. A , B >. Cgr <. A , B >. ) ) |
11 |
8 10
|
anbi12d |
|- ( x = B -> ( ( x Btwn <. A , C >. /\ <. A , B >. Cgr <. A , x >. ) <-> ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. A , B >. ) ) ) |
12 |
11
|
rspcev |
|- ( ( B e. ( EE ` N ) /\ ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. A , B >. ) ) -> E. x e. ( EE ` N ) ( x Btwn <. A , C >. /\ <. A , B >. Cgr <. A , x >. ) ) |
13 |
1 2 7 12
|
syl12anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ B Btwn <. A , C >. ) -> E. x e. ( EE ` N ) ( x Btwn <. A , C >. /\ <. A , B >. Cgr <. A , x >. ) ) |
14 |
|
simpr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
15 |
|
brsegle |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , B >. Seg<_ <. A , C >. <-> E. x e. ( EE ` N ) ( x Btwn <. A , C >. /\ <. A , B >. Cgr <. A , x >. ) ) ) |
16 |
3 4 5 4 14 15
|
syl122anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , B >. Seg<_ <. A , C >. <-> E. x e. ( EE ` N ) ( x Btwn <. A , C >. /\ <. A , B >. Cgr <. A , x >. ) ) ) |
17 |
16
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ B Btwn <. A , C >. ) -> ( <. A , B >. Seg<_ <. A , C >. <-> E. x e. ( EE ` N ) ( x Btwn <. A , C >. /\ <. A , B >. Cgr <. A , x >. ) ) ) |
18 |
13 17
|
mpbird |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ B Btwn <. A , C >. ) -> <. A , B >. Seg<_ <. A , C >. ) |
19 |
18
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. -> <. A , B >. Seg<_ <. A , C >. ) ) |