| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simplr2 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ B Btwn <. A , C >. ) -> B e. ( EE ` N ) ) | 
						
							| 2 |  | simpr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ B Btwn <. A , C >. ) -> B Btwn <. A , C >. ) | 
						
							| 3 |  | simpl |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 4 |  | simpr1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 5 |  | simpr2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 6 | 3 4 5 | cgrrflxd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. A , B >. Cgr <. A , B >. ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ B Btwn <. A , C >. ) -> <. A , B >. Cgr <. A , B >. ) | 
						
							| 8 |  | breq1 |  |-  ( x = B -> ( x Btwn <. A , C >. <-> B Btwn <. A , C >. ) ) | 
						
							| 9 |  | opeq2 |  |-  ( x = B -> <. A , x >. = <. A , B >. ) | 
						
							| 10 | 9 | breq2d |  |-  ( x = B -> ( <. A , B >. Cgr <. A , x >. <-> <. A , B >. Cgr <. A , B >. ) ) | 
						
							| 11 | 8 10 | anbi12d |  |-  ( x = B -> ( ( x Btwn <. A , C >. /\ <. A , B >. Cgr <. A , x >. ) <-> ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. A , B >. ) ) ) | 
						
							| 12 | 11 | rspcev |  |-  ( ( B e. ( EE ` N ) /\ ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. A , B >. ) ) -> E. x e. ( EE ` N ) ( x Btwn <. A , C >. /\ <. A , B >. Cgr <. A , x >. ) ) | 
						
							| 13 | 1 2 7 12 | syl12anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ B Btwn <. A , C >. ) -> E. x e. ( EE ` N ) ( x Btwn <. A , C >. /\ <. A , B >. Cgr <. A , x >. ) ) | 
						
							| 14 |  | simpr3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 15 |  | brsegle |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , B >. Seg<_ <. A , C >. <-> E. x e. ( EE ` N ) ( x Btwn <. A , C >. /\ <. A , B >. Cgr <. A , x >. ) ) ) | 
						
							| 16 | 3 4 5 4 14 15 | syl122anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , B >. Seg<_ <. A , C >. <-> E. x e. ( EE ` N ) ( x Btwn <. A , C >. /\ <. A , B >. Cgr <. A , x >. ) ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ B Btwn <. A , C >. ) -> ( <. A , B >. Seg<_ <. A , C >. <-> E. x e. ( EE ` N ) ( x Btwn <. A , C >. /\ <. A , B >. Cgr <. A , x >. ) ) ) | 
						
							| 18 | 13 17 | mpbird |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ B Btwn <. A , C >. ) -> <. A , B >. Seg<_ <. A , C >. ) | 
						
							| 19 | 18 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. -> <. A , B >. Seg<_ <. A , C >. ) ) |