Metamath Proof Explorer


Theorem btwnsegle

Description: If B falls between A and C , then A B is no longer than A C . (Contributed by Scott Fenton, 16-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion btwnsegle N A 𝔼 N B 𝔼 N C 𝔼 N B Btwn A C A B Seg A C

Proof

Step Hyp Ref Expression
1 simplr2 N A 𝔼 N B 𝔼 N C 𝔼 N B Btwn A C B 𝔼 N
2 simpr N A 𝔼 N B 𝔼 N C 𝔼 N B Btwn A C B Btwn A C
3 simpl N A 𝔼 N B 𝔼 N C 𝔼 N N
4 simpr1 N A 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N
5 simpr2 N A 𝔼 N B 𝔼 N C 𝔼 N B 𝔼 N
6 3 4 5 cgrrflxd N A 𝔼 N B 𝔼 N C 𝔼 N A B Cgr A B
7 6 adantr N A 𝔼 N B 𝔼 N C 𝔼 N B Btwn A C A B Cgr A B
8 breq1 x = B x Btwn A C B Btwn A C
9 opeq2 x = B A x = A B
10 9 breq2d x = B A B Cgr A x A B Cgr A B
11 8 10 anbi12d x = B x Btwn A C A B Cgr A x B Btwn A C A B Cgr A B
12 11 rspcev B 𝔼 N B Btwn A C A B Cgr A B x 𝔼 N x Btwn A C A B Cgr A x
13 1 2 7 12 syl12anc N A 𝔼 N B 𝔼 N C 𝔼 N B Btwn A C x 𝔼 N x Btwn A C A B Cgr A x
14 simpr3 N A 𝔼 N B 𝔼 N C 𝔼 N C 𝔼 N
15 brsegle N A 𝔼 N B 𝔼 N A 𝔼 N C 𝔼 N A B Seg A C x 𝔼 N x Btwn A C A B Cgr A x
16 3 4 5 4 14 15 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N A B Seg A C x 𝔼 N x Btwn A C A B Cgr A x
17 16 adantr N A 𝔼 N B 𝔼 N C 𝔼 N B Btwn A C A B Seg A C x 𝔼 N x Btwn A C A B Cgr A x
18 13 17 mpbird N A 𝔼 N B 𝔼 N C 𝔼 N B Btwn A C A B Seg A C
19 18 ex N A 𝔼 N B 𝔼 N C 𝔼 N B Btwn A C A B Seg A C