Metamath Proof Explorer


Theorem btwnsegle

Description: If B falls between A and C , then A B is no longer than A C . (Contributed by Scott Fenton, 16-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion btwnsegle NA𝔼NB𝔼NC𝔼NBBtwnACABSegAC

Proof

Step Hyp Ref Expression
1 simplr2 NA𝔼NB𝔼NC𝔼NBBtwnACB𝔼N
2 simpr NA𝔼NB𝔼NC𝔼NBBtwnACBBtwnAC
3 simpl NA𝔼NB𝔼NC𝔼NN
4 simpr1 NA𝔼NB𝔼NC𝔼NA𝔼N
5 simpr2 NA𝔼NB𝔼NC𝔼NB𝔼N
6 3 4 5 cgrrflxd NA𝔼NB𝔼NC𝔼NABCgrAB
7 6 adantr NA𝔼NB𝔼NC𝔼NBBtwnACABCgrAB
8 breq1 x=BxBtwnACBBtwnAC
9 opeq2 x=BAx=AB
10 9 breq2d x=BABCgrAxABCgrAB
11 8 10 anbi12d x=BxBtwnACABCgrAxBBtwnACABCgrAB
12 11 rspcev B𝔼NBBtwnACABCgrABx𝔼NxBtwnACABCgrAx
13 1 2 7 12 syl12anc NA𝔼NB𝔼NC𝔼NBBtwnACx𝔼NxBtwnACABCgrAx
14 simpr3 NA𝔼NB𝔼NC𝔼NC𝔼N
15 brsegle NA𝔼NB𝔼NA𝔼NC𝔼NABSegACx𝔼NxBtwnACABCgrAx
16 3 4 5 4 14 15 syl122anc NA𝔼NB𝔼NC𝔼NABSegACx𝔼NxBtwnACABCgrAx
17 16 adantr NA𝔼NB𝔼NC𝔼NBBtwnACABSegACx𝔼NxBtwnACABCgrAx
18 13 17 mpbird NA𝔼NB𝔼NC𝔼NBBtwnACABSegAC
19 18 ex NA𝔼NB𝔼NC𝔼NBBtwnACABSegAC