Metamath Proof Explorer


Theorem btwnsegle

Description: If B falls between A and C , then A B is no longer than A C . (Contributed by Scott Fenton, 16-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion btwnsegle ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ → ⟨ 𝐴 , 𝐵 ⟩ Seg𝐴 , 𝐶 ⟩ ) )

Proof

Step Hyp Ref Expression
1 simplr2 ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
2 simpr ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) → 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ )
3 simpl ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ )
4 simpr1 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
5 simpr2 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
6 3 4 5 cgrrflxd ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ )
7 6 adantr ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ )
8 breq1 ( 𝑥 = 𝐵 → ( 𝑥 Btwn ⟨ 𝐴 , 𝐶 ⟩ ↔ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) )
9 opeq2 ( 𝑥 = 𝐵 → ⟨ 𝐴 , 𝑥 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
10 9 breq2d ( 𝑥 = 𝐵 → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑥 ⟩ ↔ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) )
11 8 10 anbi12d ( 𝑥 = 𝐵 → ( ( 𝑥 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑥 ⟩ ) ↔ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )
12 11 rspcev ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑥 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑥 ⟩ ) )
13 1 2 7 12 syl12anc ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑥 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑥 ⟩ ) )
14 simpr3 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
15 brsegle ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ Seg𝐴 , 𝐶 ⟩ ↔ ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑥 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑥 ⟩ ) ) )
16 3 4 5 4 14 15 syl122anc ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ Seg𝐴 , 𝐶 ⟩ ↔ ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑥 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑥 ⟩ ) ) )
17 16 adantr ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) → ( ⟨ 𝐴 , 𝐵 ⟩ Seg𝐴 , 𝐶 ⟩ ↔ ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑥 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑥 ⟩ ) ) )
18 13 17 mpbird ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) → ⟨ 𝐴 , 𝐵 ⟩ Seg𝐴 , 𝐶 ⟩ )
19 18 ex ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ → ⟨ 𝐴 , 𝐵 ⟩ Seg𝐴 , 𝐶 ⟩ ) )