| Step | Hyp | Ref | Expression | 
						
							| 1 |  | btwnsegle |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. -> <. A , B >. Seg<_ <. A , C >. ) ) | 
						
							| 2 |  | 3anrev |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( C e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) | 
						
							| 3 |  | btwnsegle |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( B Btwn <. C , A >. -> <. C , B >. Seg<_ <. C , A >. ) ) | 
						
							| 4 | 2 3 | sylan2b |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. C , A >. -> <. C , B >. Seg<_ <. C , A >. ) ) | 
						
							| 5 |  | 3ancoma |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) | 
						
							| 6 |  | btwncom |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) | 
						
							| 7 | 5 6 | sylan2b |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) | 
						
							| 8 |  | simpl |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 9 |  | simpr2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 10 |  | simpr3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 11 | 8 9 10 | cgrrflx2d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. B , C >. Cgr <. C , B >. ) | 
						
							| 12 |  | simpr1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 13 | 8 12 10 | cgrrflx2d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. A , C >. Cgr <. C , A >. ) | 
						
							| 14 |  | seglecgr12 |  |-  ( ( ( N e. NN /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( ( <. B , C >. Cgr <. C , B >. /\ <. A , C >. Cgr <. C , A >. ) -> ( <. B , C >. Seg<_ <. A , C >. <-> <. C , B >. Seg<_ <. C , A >. ) ) ) | 
						
							| 15 | 8 9 10 12 10 10 9 10 12 14 | syl333anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( <. B , C >. Cgr <. C , B >. /\ <. A , C >. Cgr <. C , A >. ) -> ( <. B , C >. Seg<_ <. A , C >. <-> <. C , B >. Seg<_ <. C , A >. ) ) ) | 
						
							| 16 | 11 13 15 | mp2and |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. B , C >. Seg<_ <. A , C >. <-> <. C , B >. Seg<_ <. C , A >. ) ) | 
						
							| 17 | 4 7 16 | 3imtr4d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. -> <. B , C >. Seg<_ <. A , C >. ) ) | 
						
							| 18 | 1 17 | jcad |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. -> ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A Colinear <. B , C >. ) -> ( B Btwn <. A , C >. -> ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) ) | 
						
							| 20 |  | brcolinear |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) | 
						
							| 21 |  | simprl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> A Btwn <. B , C >. ) | 
						
							| 22 | 8 12 9 10 21 | btwncomand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> A Btwn <. C , B >. ) | 
						
							| 23 | 16 | biimpa |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ <. B , C >. Seg<_ <. A , C >. ) -> <. C , B >. Seg<_ <. C , A >. ) | 
						
							| 24 | 23 | adantrl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> <. C , B >. Seg<_ <. C , A >. ) | 
						
							| 25 |  | btwncom |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Btwn <. B , C >. <-> A Btwn <. C , B >. ) ) | 
						
							| 26 |  | 3anrot |  |-  ( ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) | 
						
							| 27 |  | btwnsegle |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A Btwn <. C , B >. -> <. C , A >. Seg<_ <. C , B >. ) ) | 
						
							| 28 | 26 27 | sylan2br |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Btwn <. C , B >. -> <. C , A >. Seg<_ <. C , B >. ) ) | 
						
							| 29 | 25 28 | sylbid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Btwn <. B , C >. -> <. C , A >. Seg<_ <. C , B >. ) ) | 
						
							| 30 | 29 | imp |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A Btwn <. B , C >. ) -> <. C , A >. Seg<_ <. C , B >. ) | 
						
							| 31 | 30 | adantrr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> <. C , A >. Seg<_ <. C , B >. ) | 
						
							| 32 |  | segleantisym |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( ( <. C , B >. Seg<_ <. C , A >. /\ <. C , A >. Seg<_ <. C , B >. ) -> <. C , B >. Cgr <. C , A >. ) ) | 
						
							| 33 | 8 10 9 10 12 32 | syl122anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( <. C , B >. Seg<_ <. C , A >. /\ <. C , A >. Seg<_ <. C , B >. ) -> <. C , B >. Cgr <. C , A >. ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> ( ( <. C , B >. Seg<_ <. C , A >. /\ <. C , A >. Seg<_ <. C , B >. ) -> <. C , B >. Cgr <. C , A >. ) ) | 
						
							| 35 | 24 31 34 | mp2and |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> <. C , B >. Cgr <. C , A >. ) | 
						
							| 36 | 8 10 9 12 22 35 | endofsegidand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> B = A ) | 
						
							| 37 |  | btwntriv1 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> A Btwn <. A , C >. ) | 
						
							| 38 | 37 | 3adant3r2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> A Btwn <. A , C >. ) | 
						
							| 39 |  | breq1 |  |-  ( B = A -> ( B Btwn <. A , C >. <-> A Btwn <. A , C >. ) ) | 
						
							| 40 | 38 39 | syl5ibrcom |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B = A -> B Btwn <. A , C >. ) ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> ( B = A -> B Btwn <. A , C >. ) ) | 
						
							| 42 | 36 41 | mpd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> B Btwn <. A , C >. ) | 
						
							| 43 | 42 | expr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A Btwn <. B , C >. ) -> ( <. B , C >. Seg<_ <. A , C >. -> B Btwn <. A , C >. ) ) | 
						
							| 44 | 43 | adantld |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A Btwn <. B , C >. ) -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) -> B Btwn <. A , C >. ) ) | 
						
							| 45 | 44 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Btwn <. B , C >. -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) -> B Btwn <. A , C >. ) ) ) | 
						
							| 46 | 7 | biimprd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. C , A >. -> B Btwn <. A , C >. ) ) | 
						
							| 47 | 46 | a1dd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. C , A >. -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) -> B Btwn <. A , C >. ) ) ) | 
						
							| 48 |  | simprl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( C Btwn <. A , B >. /\ <. A , B >. Seg<_ <. A , C >. ) ) -> C Btwn <. A , B >. ) | 
						
							| 49 |  | simprr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( C Btwn <. A , B >. /\ <. A , B >. Seg<_ <. A , C >. ) ) -> <. A , B >. Seg<_ <. A , C >. ) | 
						
							| 50 |  | 3ancomb |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) | 
						
							| 51 |  | btwnsegle |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. -> <. A , C >. Seg<_ <. A , B >. ) ) | 
						
							| 52 | 50 51 | sylan2b |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. -> <. A , C >. Seg<_ <. A , B >. ) ) | 
						
							| 53 | 52 | imp |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ C Btwn <. A , B >. ) -> <. A , C >. Seg<_ <. A , B >. ) | 
						
							| 54 | 53 | adantrr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( C Btwn <. A , B >. /\ <. A , B >. Seg<_ <. A , C >. ) ) -> <. A , C >. Seg<_ <. A , B >. ) | 
						
							| 55 |  | segleantisym |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. A , C >. Seg<_ <. A , B >. ) -> <. A , B >. Cgr <. A , C >. ) ) | 
						
							| 56 | 8 12 9 12 10 55 | syl122anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. A , C >. Seg<_ <. A , B >. ) -> <. A , B >. Cgr <. A , C >. ) ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( C Btwn <. A , B >. /\ <. A , B >. Seg<_ <. A , C >. ) ) -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. A , C >. Seg<_ <. A , B >. ) -> <. A , B >. Cgr <. A , C >. ) ) | 
						
							| 58 | 49 54 57 | mp2and |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( C Btwn <. A , B >. /\ <. A , B >. Seg<_ <. A , C >. ) ) -> <. A , B >. Cgr <. A , C >. ) | 
						
							| 59 | 8 12 9 10 48 58 | endofsegidand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( C Btwn <. A , B >. /\ <. A , B >. Seg<_ <. A , C >. ) ) -> B = C ) | 
						
							| 60 |  | btwntriv2 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> C Btwn <. A , C >. ) | 
						
							| 61 | 60 | 3adant3r2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> C Btwn <. A , C >. ) | 
						
							| 62 |  | breq1 |  |-  ( B = C -> ( B Btwn <. A , C >. <-> C Btwn <. A , C >. ) ) | 
						
							| 63 | 61 62 | syl5ibrcom |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B = C -> B Btwn <. A , C >. ) ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( C Btwn <. A , B >. /\ <. A , B >. Seg<_ <. A , C >. ) ) -> ( B = C -> B Btwn <. A , C >. ) ) | 
						
							| 65 | 59 64 | mpd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( C Btwn <. A , B >. /\ <. A , B >. Seg<_ <. A , C >. ) ) -> B Btwn <. A , C >. ) | 
						
							| 66 | 65 | expr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ C Btwn <. A , B >. ) -> ( <. A , B >. Seg<_ <. A , C >. -> B Btwn <. A , C >. ) ) | 
						
							| 67 | 66 | adantrd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ C Btwn <. A , B >. ) -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) -> B Btwn <. A , C >. ) ) | 
						
							| 68 | 67 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) -> B Btwn <. A , C >. ) ) ) | 
						
							| 69 | 45 47 68 | 3jaod |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) -> B Btwn <. A , C >. ) ) ) | 
						
							| 70 | 20 69 | sylbid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) -> B Btwn <. A , C >. ) ) ) | 
						
							| 71 | 70 | imp |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A Colinear <. B , C >. ) -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) -> B Btwn <. A , C >. ) ) | 
						
							| 72 | 19 71 | impbid |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A Colinear <. B , C >. ) -> ( B Btwn <. A , C >. <-> ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) ) | 
						
							| 73 | 72 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. -> ( B Btwn <. A , C >. <-> ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) ) ) |