Step |
Hyp |
Ref |
Expression |
1 |
|
btwnsegle |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. -> <. A , B >. Seg<_ <. A , C >. ) ) |
2 |
|
3anrev |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( C e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) |
3 |
|
btwnsegle |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( B Btwn <. C , A >. -> <. C , B >. Seg<_ <. C , A >. ) ) |
4 |
2 3
|
sylan2b |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. C , A >. -> <. C , B >. Seg<_ <. C , A >. ) ) |
5 |
|
3ancoma |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
6 |
|
btwncom |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) |
7 |
5 6
|
sylan2b |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) |
8 |
|
simpl |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> N e. NN ) |
9 |
|
simpr2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
10 |
|
simpr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
11 |
8 9 10
|
cgrrflx2d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. B , C >. Cgr <. C , B >. ) |
12 |
|
simpr1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
13 |
8 12 10
|
cgrrflx2d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. A , C >. Cgr <. C , A >. ) |
14 |
|
seglecgr12 |
|- ( ( ( N e. NN /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( ( <. B , C >. Cgr <. C , B >. /\ <. A , C >. Cgr <. C , A >. ) -> ( <. B , C >. Seg<_ <. A , C >. <-> <. C , B >. Seg<_ <. C , A >. ) ) ) |
15 |
8 9 10 12 10 10 9 10 12 14
|
syl333anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( <. B , C >. Cgr <. C , B >. /\ <. A , C >. Cgr <. C , A >. ) -> ( <. B , C >. Seg<_ <. A , C >. <-> <. C , B >. Seg<_ <. C , A >. ) ) ) |
16 |
11 13 15
|
mp2and |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. B , C >. Seg<_ <. A , C >. <-> <. C , B >. Seg<_ <. C , A >. ) ) |
17 |
4 7 16
|
3imtr4d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. -> <. B , C >. Seg<_ <. A , C >. ) ) |
18 |
1 17
|
jcad |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. -> ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) ) |
19 |
18
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A Colinear <. B , C >. ) -> ( B Btwn <. A , C >. -> ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) ) |
20 |
|
brcolinear |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) |
21 |
|
simprl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> A Btwn <. B , C >. ) |
22 |
8 12 9 10 21
|
btwncomand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> A Btwn <. C , B >. ) |
23 |
16
|
biimpa |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ <. B , C >. Seg<_ <. A , C >. ) -> <. C , B >. Seg<_ <. C , A >. ) |
24 |
23
|
adantrl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> <. C , B >. Seg<_ <. C , A >. ) |
25 |
|
btwncom |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Btwn <. B , C >. <-> A Btwn <. C , B >. ) ) |
26 |
|
3anrot |
|- ( ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
27 |
|
btwnsegle |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A Btwn <. C , B >. -> <. C , A >. Seg<_ <. C , B >. ) ) |
28 |
26 27
|
sylan2br |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Btwn <. C , B >. -> <. C , A >. Seg<_ <. C , B >. ) ) |
29 |
25 28
|
sylbid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Btwn <. B , C >. -> <. C , A >. Seg<_ <. C , B >. ) ) |
30 |
29
|
imp |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A Btwn <. B , C >. ) -> <. C , A >. Seg<_ <. C , B >. ) |
31 |
30
|
adantrr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> <. C , A >. Seg<_ <. C , B >. ) |
32 |
|
segleantisym |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( ( <. C , B >. Seg<_ <. C , A >. /\ <. C , A >. Seg<_ <. C , B >. ) -> <. C , B >. Cgr <. C , A >. ) ) |
33 |
8 10 9 10 12 32
|
syl122anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( <. C , B >. Seg<_ <. C , A >. /\ <. C , A >. Seg<_ <. C , B >. ) -> <. C , B >. Cgr <. C , A >. ) ) |
34 |
33
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> ( ( <. C , B >. Seg<_ <. C , A >. /\ <. C , A >. Seg<_ <. C , B >. ) -> <. C , B >. Cgr <. C , A >. ) ) |
35 |
24 31 34
|
mp2and |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> <. C , B >. Cgr <. C , A >. ) |
36 |
8 10 9 12 22 35
|
endofsegidand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> B = A ) |
37 |
|
btwntriv1 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> A Btwn <. A , C >. ) |
38 |
37
|
3adant3r2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> A Btwn <. A , C >. ) |
39 |
|
breq1 |
|- ( B = A -> ( B Btwn <. A , C >. <-> A Btwn <. A , C >. ) ) |
40 |
38 39
|
syl5ibrcom |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B = A -> B Btwn <. A , C >. ) ) |
41 |
40
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> ( B = A -> B Btwn <. A , C >. ) ) |
42 |
36 41
|
mpd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) -> B Btwn <. A , C >. ) |
43 |
42
|
expr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A Btwn <. B , C >. ) -> ( <. B , C >. Seg<_ <. A , C >. -> B Btwn <. A , C >. ) ) |
44 |
43
|
adantld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A Btwn <. B , C >. ) -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) -> B Btwn <. A , C >. ) ) |
45 |
44
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Btwn <. B , C >. -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) -> B Btwn <. A , C >. ) ) ) |
46 |
7
|
biimprd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. C , A >. -> B Btwn <. A , C >. ) ) |
47 |
46
|
a1dd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. C , A >. -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) -> B Btwn <. A , C >. ) ) ) |
48 |
|
simprl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( C Btwn <. A , B >. /\ <. A , B >. Seg<_ <. A , C >. ) ) -> C Btwn <. A , B >. ) |
49 |
|
simprr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( C Btwn <. A , B >. /\ <. A , B >. Seg<_ <. A , C >. ) ) -> <. A , B >. Seg<_ <. A , C >. ) |
50 |
|
3ancomb |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) |
51 |
|
btwnsegle |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. -> <. A , C >. Seg<_ <. A , B >. ) ) |
52 |
50 51
|
sylan2b |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. -> <. A , C >. Seg<_ <. A , B >. ) ) |
53 |
52
|
imp |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ C Btwn <. A , B >. ) -> <. A , C >. Seg<_ <. A , B >. ) |
54 |
53
|
adantrr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( C Btwn <. A , B >. /\ <. A , B >. Seg<_ <. A , C >. ) ) -> <. A , C >. Seg<_ <. A , B >. ) |
55 |
|
segleantisym |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. A , C >. Seg<_ <. A , B >. ) -> <. A , B >. Cgr <. A , C >. ) ) |
56 |
8 12 9 12 10 55
|
syl122anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. A , C >. Seg<_ <. A , B >. ) -> <. A , B >. Cgr <. A , C >. ) ) |
57 |
56
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( C Btwn <. A , B >. /\ <. A , B >. Seg<_ <. A , C >. ) ) -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. A , C >. Seg<_ <. A , B >. ) -> <. A , B >. Cgr <. A , C >. ) ) |
58 |
49 54 57
|
mp2and |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( C Btwn <. A , B >. /\ <. A , B >. Seg<_ <. A , C >. ) ) -> <. A , B >. Cgr <. A , C >. ) |
59 |
8 12 9 10 48 58
|
endofsegidand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( C Btwn <. A , B >. /\ <. A , B >. Seg<_ <. A , C >. ) ) -> B = C ) |
60 |
|
btwntriv2 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> C Btwn <. A , C >. ) |
61 |
60
|
3adant3r2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> C Btwn <. A , C >. ) |
62 |
|
breq1 |
|- ( B = C -> ( B Btwn <. A , C >. <-> C Btwn <. A , C >. ) ) |
63 |
61 62
|
syl5ibrcom |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B = C -> B Btwn <. A , C >. ) ) |
64 |
63
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( C Btwn <. A , B >. /\ <. A , B >. Seg<_ <. A , C >. ) ) -> ( B = C -> B Btwn <. A , C >. ) ) |
65 |
59 64
|
mpd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( C Btwn <. A , B >. /\ <. A , B >. Seg<_ <. A , C >. ) ) -> B Btwn <. A , C >. ) |
66 |
65
|
expr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ C Btwn <. A , B >. ) -> ( <. A , B >. Seg<_ <. A , C >. -> B Btwn <. A , C >. ) ) |
67 |
66
|
adantrd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ C Btwn <. A , B >. ) -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) -> B Btwn <. A , C >. ) ) |
68 |
67
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) -> B Btwn <. A , C >. ) ) ) |
69 |
45 47 68
|
3jaod |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) -> B Btwn <. A , C >. ) ) ) |
70 |
20 69
|
sylbid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) -> B Btwn <. A , C >. ) ) ) |
71 |
70
|
imp |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A Colinear <. B , C >. ) -> ( ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) -> B Btwn <. A , C >. ) ) |
72 |
19 71
|
impbid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A Colinear <. B , C >. ) -> ( B Btwn <. A , C >. <-> ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) ) |
73 |
72
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. -> ( B Btwn <. A , C >. <-> ( <. A , B >. Seg<_ <. A , C >. /\ <. B , C >. Seg<_ <. A , C >. ) ) ) ) |