| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brsegle |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Seg<_ <. C , D >. <-> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) |
| 2 |
|
brsegle2 |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( <. C , D >. Seg<_ <. A , B >. <-> E. t e. ( EE ` N ) ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) ) |
| 3 |
2
|
3com23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. C , D >. Seg<_ <. A , B >. <-> E. t e. ( EE ` N ) ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) ) |
| 4 |
1 3
|
anbi12d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( <. A , B >. Seg<_ <. C , D >. /\ <. C , D >. Seg<_ <. A , B >. ) <-> ( E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ E. t e. ( EE ` N ) ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) ) ) |
| 5 |
|
reeanv |
|- ( E. y e. ( EE ` N ) E. t e. ( EE ` N ) ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) <-> ( E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ E. t e. ( EE ` N ) ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) ) |
| 6 |
4 5
|
bitr4di |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( <. A , B >. Seg<_ <. C , D >. /\ <. C , D >. Seg<_ <. A , B >. ) <-> E. y e. ( EE ` N ) E. t e. ( EE ` N ) ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) ) ) |
| 7 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) -> N e. NN ) |
| 8 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
| 9 |
|
simprr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) -> t e. ( EE ` N ) ) |
| 10 |
|
simprl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) -> y e. ( EE ` N ) ) |
| 11 |
|
simpl3r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
| 12 |
|
simprll |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) ) -> y Btwn <. C , D >. ) |
| 13 |
|
simprrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) ) -> D Btwn <. C , t >. ) |
| 14 |
7 8 10 11 9 12 13
|
btwnexchand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) ) -> y Btwn <. C , t >. ) |
| 15 |
|
simpl2l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 16 |
|
simpl2r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 17 |
|
simprrr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) ) -> <. C , t >. Cgr <. A , B >. ) |
| 18 |
|
simprlr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) ) -> <. A , B >. Cgr <. C , y >. ) |
| 19 |
7 8 9 15 16 8 10 17 18
|
cgrtrand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) ) -> <. C , t >. Cgr <. C , y >. ) |
| 20 |
7 8 9 10 14 19
|
endofsegidand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) ) -> t = y ) |
| 21 |
|
opeq2 |
|- ( t = y -> <. C , t >. = <. C , y >. ) |
| 22 |
21
|
breq2d |
|- ( t = y -> ( D Btwn <. C , t >. <-> D Btwn <. C , y >. ) ) |
| 23 |
21
|
breq1d |
|- ( t = y -> ( <. C , t >. Cgr <. A , B >. <-> <. C , y >. Cgr <. A , B >. ) ) |
| 24 |
22 23
|
anbi12d |
|- ( t = y -> ( ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) <-> ( D Btwn <. C , y >. /\ <. C , y >. Cgr <. A , B >. ) ) ) |
| 25 |
24
|
anbi2d |
|- ( t = y -> ( ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) <-> ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , y >. /\ <. C , y >. Cgr <. A , B >. ) ) ) ) |
| 26 |
25
|
anbi2d |
|- ( t = y -> ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) ) <-> ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , y >. /\ <. C , y >. Cgr <. A , B >. ) ) ) ) ) |
| 27 |
|
simprrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , y >. /\ <. C , y >. Cgr <. A , B >. ) ) ) -> D Btwn <. C , y >. ) |
| 28 |
7 11 8 10 27
|
btwncomand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , y >. /\ <. C , y >. Cgr <. A , B >. ) ) ) -> D Btwn <. y , C >. ) |
| 29 |
|
simprll |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , y >. /\ <. C , y >. Cgr <. A , B >. ) ) ) -> y Btwn <. C , D >. ) |
| 30 |
7 10 8 11 29
|
btwncomand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , y >. /\ <. C , y >. Cgr <. A , B >. ) ) ) -> y Btwn <. D , C >. ) |
| 31 |
|
btwnswapid |
|- ( ( N e. NN /\ ( D e. ( EE ` N ) /\ y e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( D Btwn <. y , C >. /\ y Btwn <. D , C >. ) -> D = y ) ) |
| 32 |
7 11 10 8 31
|
syl13anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) -> ( ( D Btwn <. y , C >. /\ y Btwn <. D , C >. ) -> D = y ) ) |
| 33 |
32
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , y >. /\ <. C , y >. Cgr <. A , B >. ) ) ) -> ( ( D Btwn <. y , C >. /\ y Btwn <. D , C >. ) -> D = y ) ) |
| 34 |
28 30 33
|
mp2and |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , y >. /\ <. C , y >. Cgr <. A , B >. ) ) ) -> D = y ) |
| 35 |
|
simprlr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , y >. /\ <. C , y >. Cgr <. A , B >. ) ) ) -> <. A , B >. Cgr <. C , y >. ) |
| 36 |
|
opeq2 |
|- ( D = y -> <. C , D >. = <. C , y >. ) |
| 37 |
36
|
breq2d |
|- ( D = y -> ( <. A , B >. Cgr <. C , D >. <-> <. A , B >. Cgr <. C , y >. ) ) |
| 38 |
35 37
|
syl5ibrcom |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , y >. /\ <. C , y >. Cgr <. A , B >. ) ) ) -> ( D = y -> <. A , B >. Cgr <. C , D >. ) ) |
| 39 |
34 38
|
mpd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , y >. /\ <. C , y >. Cgr <. A , B >. ) ) ) -> <. A , B >. Cgr <. C , D >. ) |
| 40 |
26 39
|
biimtrdi |
|- ( t = y -> ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) ) -> <. A , B >. Cgr <. C , D >. ) ) |
| 41 |
20 40
|
mpcom |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) ) /\ ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) ) -> <. A , B >. Cgr <. C , D >. ) |
| 42 |
41
|
exp31 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( y e. ( EE ` N ) /\ t e. ( EE ` N ) ) -> ( ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) -> <. A , B >. Cgr <. C , D >. ) ) ) |
| 43 |
42
|
rexlimdvv |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. y e. ( EE ` N ) E. t e. ( EE ` N ) ( ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( D Btwn <. C , t >. /\ <. C , t >. Cgr <. A , B >. ) ) -> <. A , B >. Cgr <. C , D >. ) ) |
| 44 |
6 43
|
sylbid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( <. A , B >. Seg<_ <. C , D >. /\ <. C , D >. Seg<_ <. A , B >. ) -> <. A , B >. Cgr <. C , D >. ) ) |