| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|
| 2 |
|
simplr |
|
| 3 |
|
simprr |
|
| 4 |
1 2 3
|
3jca |
|
| 5 |
|
simplr1 |
|
| 6 |
|
simplr3 |
|
| 7 |
|
df-3an |
|
| 8 |
|
simp1 |
|
| 9 |
|
simp3r |
|
| 10 |
|
simp2l |
|
| 11 |
|
simp2r |
|
| 12 |
|
simp3l |
|
| 13 |
|
simpr2 |
|
| 14 |
|
simpr3 |
|
| 15 |
8 9 10 11 12 13 14
|
btwnexchand |
|
| 16 |
15
|
orcd |
|
| 17 |
7 16
|
sylan2br |
|
| 18 |
17
|
expr |
|
| 19 |
|
simprlr |
|
| 20 |
|
simprr |
|
| 21 |
|
btwnconn3 |
|
| 22 |
8 9 10 12 11 21
|
syl122anc |
|
| 23 |
22
|
adantr |
|
| 24 |
19 20 23
|
mp2and |
|
| 25 |
24
|
expr |
|
| 26 |
18 25
|
jaod |
|
| 27 |
26
|
expr |
|
| 28 |
|
simpll2 |
|
| 29 |
28
|
adantl |
|
| 30 |
29
|
necomd |
|
| 31 |
|
simprlr |
|
| 32 |
|
simprr |
|
| 33 |
|
btwnconn1 |
|
| 34 |
8 9 11 10 12 33
|
syl122anc |
|
| 35 |
34
|
adantr |
|
| 36 |
30 31 32 35
|
mp3and |
|
| 37 |
36
|
expr |
|
| 38 |
|
df-3an |
|
| 39 |
|
simpr3 |
|
| 40 |
|
simpr2 |
|
| 41 |
8 9 12 11 10 39 40
|
btwnexchand |
|
| 42 |
41
|
olcd |
|
| 43 |
38 42
|
sylan2br |
|
| 44 |
43
|
expr |
|
| 45 |
37 44
|
jaod |
|
| 46 |
45
|
expr |
|
| 47 |
27 46
|
jaod |
|
| 48 |
47
|
imp32 |
|
| 49 |
5 6 48
|
3jca |
|
| 50 |
49
|
exp31 |
|
| 51 |
4 50
|
syl5 |
|
| 52 |
51
|
impd |
|
| 53 |
|
broutsideof2 |
|
| 54 |
8 9 10 11 53
|
syl13anc |
|
| 55 |
|
broutsideof2 |
|
| 56 |
8 9 11 12 55
|
syl13anc |
|
| 57 |
54 56
|
anbi12d |
|
| 58 |
|
df-3an |
|
| 59 |
|
df-3an |
|
| 60 |
58 59
|
anbi12i |
|
| 61 |
|
an4 |
|
| 62 |
60 61
|
bitr4i |
|
| 63 |
57 62
|
bitrdi |
|
| 64 |
|
broutsideof2 |
|
| 65 |
8 9 10 12 64
|
syl13anc |
|
| 66 |
52 63 65
|
3imtr4d |
|