Metamath Proof Explorer


Theorem pcmplfinf

Description: Given a paracompact topology J and an open cover U , there exists an open refinement ran f that is locally finite, using the same index as the original cover U . (Contributed by Thierry Arnoux, 31-Jan-2020)

Ref Expression
Hypothesis pcmplfin.x 𝑋 = 𝐽
Assertion pcmplfinf ( ( 𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈 ) → ∃ 𝑓 ( 𝑓 : 𝑈𝐽 ∧ ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 pcmplfin.x 𝑋 = 𝐽
2 simpll2 ( ( ( ( 𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈 ) ∧ 𝑣 ∈ 𝒫 𝐽 ) ∧ ( 𝑣 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑣 Ref 𝑈 ) ) → 𝑈𝐽 )
3 simpll3 ( ( ( ( 𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈 ) ∧ 𝑣 ∈ 𝒫 𝐽 ) ∧ ( 𝑣 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑣 Ref 𝑈 ) ) → 𝑋 = 𝑈 )
4 elpwi ( 𝑣 ∈ 𝒫 𝐽𝑣𝐽 )
5 4 ad2antlr ( ( ( ( 𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈 ) ∧ 𝑣 ∈ 𝒫 𝐽 ) ∧ ( 𝑣 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑣 Ref 𝑈 ) ) → 𝑣𝐽 )
6 simprr ( ( ( ( 𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈 ) ∧ 𝑣 ∈ 𝒫 𝐽 ) ∧ ( 𝑣 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑣 Ref 𝑈 ) ) → 𝑣 Ref 𝑈 )
7 simprl ( ( ( ( 𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈 ) ∧ 𝑣 ∈ 𝒫 𝐽 ) ∧ ( 𝑣 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑣 Ref 𝑈 ) ) → 𝑣 ∈ ( LocFin ‘ 𝐽 ) )
8 1 2 3 5 6 7 locfinref ( ( ( ( 𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈 ) ∧ 𝑣 ∈ 𝒫 𝐽 ) ∧ ( 𝑣 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑣 Ref 𝑈 ) ) → ∃ 𝑓 ( 𝑓 : 𝑈𝐽 ∧ ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) )
9 1 pcmplfin ( ( 𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈 ) → ∃ 𝑣 ∈ 𝒫 𝐽 ( 𝑣 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑣 Ref 𝑈 ) )
10 8 9 r19.29a ( ( 𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈 ) → ∃ 𝑓 ( 𝑓 : 𝑈𝐽 ∧ ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) )