| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcmplfin.x |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
simpll2 |
⊢ ( ( ( ( 𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈 ) ∧ 𝑣 ∈ 𝒫 𝐽 ) ∧ ( 𝑣 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑣 Ref 𝑈 ) ) → 𝑈 ⊆ 𝐽 ) |
| 3 |
|
simpll3 |
⊢ ( ( ( ( 𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈 ) ∧ 𝑣 ∈ 𝒫 𝐽 ) ∧ ( 𝑣 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑣 Ref 𝑈 ) ) → 𝑋 = ∪ 𝑈 ) |
| 4 |
|
elpwi |
⊢ ( 𝑣 ∈ 𝒫 𝐽 → 𝑣 ⊆ 𝐽 ) |
| 5 |
4
|
ad2antlr |
⊢ ( ( ( ( 𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈 ) ∧ 𝑣 ∈ 𝒫 𝐽 ) ∧ ( 𝑣 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑣 Ref 𝑈 ) ) → 𝑣 ⊆ 𝐽 ) |
| 6 |
|
simprr |
⊢ ( ( ( ( 𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈 ) ∧ 𝑣 ∈ 𝒫 𝐽 ) ∧ ( 𝑣 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑣 Ref 𝑈 ) ) → 𝑣 Ref 𝑈 ) |
| 7 |
|
simprl |
⊢ ( ( ( ( 𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈 ) ∧ 𝑣 ∈ 𝒫 𝐽 ) ∧ ( 𝑣 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑣 Ref 𝑈 ) ) → 𝑣 ∈ ( LocFin ‘ 𝐽 ) ) |
| 8 |
1 2 3 5 6 7
|
locfinref |
⊢ ( ( ( ( 𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈 ) ∧ 𝑣 ∈ 𝒫 𝐽 ) ∧ ( 𝑣 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑣 Ref 𝑈 ) ) → ∃ 𝑓 ( 𝑓 : 𝑈 ⟶ 𝐽 ∧ ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) |
| 9 |
1
|
pcmplfin |
⊢ ( ( 𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈 ) → ∃ 𝑣 ∈ 𝒫 𝐽 ( 𝑣 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑣 Ref 𝑈 ) ) |
| 10 |
8 9
|
r19.29a |
⊢ ( ( 𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈 ) → ∃ 𝑓 ( 𝑓 : 𝑈 ⟶ 𝐽 ∧ ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) |