Step |
Hyp |
Ref |
Expression |
1 |
|
locfinref.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
locfinref.1 |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) |
3 |
|
locfinref.2 |
⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) |
4 |
|
locfinref.3 |
⊢ ( 𝜑 → 𝑉 ⊆ 𝐽 ) |
5 |
|
locfinref.4 |
⊢ ( 𝜑 → 𝑉 Ref 𝑈 ) |
6 |
|
locfinref.5 |
⊢ ( 𝜑 → 𝑉 ∈ ( LocFin ‘ 𝐽 ) ) |
7 |
|
f0 |
⊢ ∅ : ∅ ⟶ 𝐽 |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑈 = ∅ ) → 𝑈 = ∅ ) |
9 |
8
|
feq2d |
⊢ ( ( 𝜑 ∧ 𝑈 = ∅ ) → ( ∅ : 𝑈 ⟶ 𝐽 ↔ ∅ : ∅ ⟶ 𝐽 ) ) |
10 |
7 9
|
mpbiri |
⊢ ( ( 𝜑 ∧ 𝑈 = ∅ ) → ∅ : 𝑈 ⟶ 𝐽 ) |
11 |
|
rn0 |
⊢ ran ∅ = ∅ |
12 |
|
0ex |
⊢ ∅ ∈ V |
13 |
|
refref |
⊢ ( ∅ ∈ V → ∅ Ref ∅ ) |
14 |
12 13
|
ax-mp |
⊢ ∅ Ref ∅ |
15 |
11 14
|
eqbrtri |
⊢ ran ∅ Ref ∅ |
16 |
15 8
|
breqtrrid |
⊢ ( ( 𝜑 ∧ 𝑈 = ∅ ) → ran ∅ Ref 𝑈 ) |
17 |
|
sn0top |
⊢ { ∅ } ∈ Top |
18 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑈 = ∅ ) → { ∅ } ∈ Top ) |
19 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑈 = ∅ ) → ∅ = ∅ ) |
20 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ∃ 𝑛 ∈ { ∅ } ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ ran ∅ ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) |
21 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑈 = ∅ ) → ∀ 𝑥 ∈ ∅ ∃ 𝑛 ∈ { ∅ } ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ ran ∅ ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
22 |
12
|
unisn |
⊢ ∪ { ∅ } = ∅ |
23 |
22
|
eqcomi |
⊢ ∅ = ∪ { ∅ } |
24 |
11
|
unieqi |
⊢ ∪ ran ∅ = ∪ ∅ |
25 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
26 |
24 25
|
eqtr2i |
⊢ ∅ = ∪ ran ∅ |
27 |
23 26
|
islocfin |
⊢ ( ran ∅ ∈ ( LocFin ‘ { ∅ } ) ↔ ( { ∅ } ∈ Top ∧ ∅ = ∅ ∧ ∀ 𝑥 ∈ ∅ ∃ 𝑛 ∈ { ∅ } ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ ran ∅ ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
28 |
18 19 21 27
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑈 = ∅ ) → ran ∅ ∈ ( LocFin ‘ { ∅ } ) ) |
29 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 = ∅ ) → 𝑋 = ∪ 𝑈 ) |
30 |
8
|
unieqd |
⊢ ( ( 𝜑 ∧ 𝑈 = ∅ ) → ∪ 𝑈 = ∪ ∅ ) |
31 |
29 30
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑈 = ∅ ) → 𝑋 = ∪ ∅ ) |
32 |
31 1 25
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ 𝑈 = ∅ ) → ∪ 𝐽 = ∅ ) |
33 |
|
locfintop |
⊢ ( 𝑉 ∈ ( LocFin ‘ 𝐽 ) → 𝐽 ∈ Top ) |
34 |
|
0top |
⊢ ( 𝐽 ∈ Top → ( ∪ 𝐽 = ∅ ↔ 𝐽 = { ∅ } ) ) |
35 |
6 33 34
|
3syl |
⊢ ( 𝜑 → ( ∪ 𝐽 = ∅ ↔ 𝐽 = { ∅ } ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 = ∅ ) → ( ∪ 𝐽 = ∅ ↔ 𝐽 = { ∅ } ) ) |
37 |
32 36
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑈 = ∅ ) → 𝐽 = { ∅ } ) |
38 |
37
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑈 = ∅ ) → ( LocFin ‘ 𝐽 ) = ( LocFin ‘ { ∅ } ) ) |
39 |
28 38
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑈 = ∅ ) → ran ∅ ∈ ( LocFin ‘ 𝐽 ) ) |
40 |
|
feq1 |
⊢ ( 𝑓 = ∅ → ( 𝑓 : 𝑈 ⟶ 𝐽 ↔ ∅ : 𝑈 ⟶ 𝐽 ) ) |
41 |
|
rneq |
⊢ ( 𝑓 = ∅ → ran 𝑓 = ran ∅ ) |
42 |
41
|
breq1d |
⊢ ( 𝑓 = ∅ → ( ran 𝑓 Ref 𝑈 ↔ ran ∅ Ref 𝑈 ) ) |
43 |
41
|
eleq1d |
⊢ ( 𝑓 = ∅ → ( ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ↔ ran ∅ ∈ ( LocFin ‘ 𝐽 ) ) ) |
44 |
40 42 43
|
3anbi123d |
⊢ ( 𝑓 = ∅ → ( ( 𝑓 : 𝑈 ⟶ 𝐽 ∧ ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ↔ ( ∅ : 𝑈 ⟶ 𝐽 ∧ ran ∅ Ref 𝑈 ∧ ran ∅ ∈ ( LocFin ‘ 𝐽 ) ) ) ) |
45 |
12 44
|
spcev |
⊢ ( ( ∅ : 𝑈 ⟶ 𝐽 ∧ ran ∅ Ref 𝑈 ∧ ran ∅ ∈ ( LocFin ‘ 𝐽 ) ) → ∃ 𝑓 ( 𝑓 : 𝑈 ⟶ 𝐽 ∧ ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) |
46 |
10 16 39 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑈 = ∅ ) → ∃ 𝑓 ( 𝑓 : 𝑈 ⟶ 𝐽 ∧ ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) |
47 |
1 2 3 4 5 6
|
locfinreflem |
⊢ ( 𝜑 → ∃ 𝑔 ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) → ∃ 𝑔 ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) |
49 |
|
simpl |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → ( 𝜑 ∧ 𝑈 ≠ ∅ ) ) |
50 |
|
simprl1 |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → Fun 𝑔 ) |
51 |
|
fdmrn |
⊢ ( Fun 𝑔 ↔ 𝑔 : dom 𝑔 ⟶ ran 𝑔 ) |
52 |
50 51
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → 𝑔 : dom 𝑔 ⟶ ran 𝑔 ) |
53 |
|
simprl3 |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → ran 𝑔 ⊆ 𝐽 ) |
54 |
52 53
|
fssd |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → 𝑔 : dom 𝑔 ⟶ 𝐽 ) |
55 |
|
fconstg |
⊢ ( ∅ ∈ V → ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) : ( 𝑈 ∖ dom 𝑔 ) ⟶ { ∅ } ) |
56 |
12 55
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) : ( 𝑈 ∖ dom 𝑔 ) ⟶ { ∅ } ) |
57 |
|
0opn |
⊢ ( 𝐽 ∈ Top → ∅ ∈ 𝐽 ) |
58 |
6 33 57
|
3syl |
⊢ ( 𝜑 → ∅ ∈ 𝐽 ) |
59 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → ∅ ∈ 𝐽 ) |
60 |
59
|
snssd |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → { ∅ } ⊆ 𝐽 ) |
61 |
56 60
|
fssd |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) : ( 𝑈 ∖ dom 𝑔 ) ⟶ 𝐽 ) |
62 |
|
disjdif |
⊢ ( dom 𝑔 ∩ ( 𝑈 ∖ dom 𝑔 ) ) = ∅ |
63 |
62
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → ( dom 𝑔 ∩ ( 𝑈 ∖ dom 𝑔 ) ) = ∅ ) |
64 |
|
fun2 |
⊢ ( ( ( 𝑔 : dom 𝑔 ⟶ 𝐽 ∧ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) : ( 𝑈 ∖ dom 𝑔 ) ⟶ 𝐽 ) ∧ ( dom 𝑔 ∩ ( 𝑈 ∖ dom 𝑔 ) ) = ∅ ) → ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) : ( dom 𝑔 ∪ ( 𝑈 ∖ dom 𝑔 ) ) ⟶ 𝐽 ) |
65 |
54 61 63 64
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) : ( dom 𝑔 ∪ ( 𝑈 ∖ dom 𝑔 ) ) ⟶ 𝐽 ) |
66 |
|
simprl2 |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → dom 𝑔 ⊆ 𝑈 ) |
67 |
|
undif |
⊢ ( dom 𝑔 ⊆ 𝑈 ↔ ( dom 𝑔 ∪ ( 𝑈 ∖ dom 𝑔 ) ) = 𝑈 ) |
68 |
66 67
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → ( dom 𝑔 ∪ ( 𝑈 ∖ dom 𝑔 ) ) = 𝑈 ) |
69 |
68
|
feq2d |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → ( ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) : ( dom 𝑔 ∪ ( 𝑈 ∖ dom 𝑔 ) ) ⟶ 𝐽 ↔ ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) : 𝑈 ⟶ 𝐽 ) ) |
70 |
65 69
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) : 𝑈 ⟶ 𝐽 ) |
71 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ran 𝑔 ) → ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ran 𝑔 ) |
72 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → ran 𝑔 Ref 𝑈 ) |
73 |
72
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ran 𝑔 ) → ran 𝑔 Ref 𝑈 ) |
74 |
71 73
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ran 𝑔 ) → ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) Ref 𝑈 ) |
75 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ { ∅ } ) ) → ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ { ∅ } ) ) |
76 |
49
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → 𝑈 ≠ ∅ ) |
77 |
|
refun0 |
⊢ ( ( ran 𝑔 Ref 𝑈 ∧ 𝑈 ≠ ∅ ) → ( ran 𝑔 ∪ { ∅ } ) Ref 𝑈 ) |
78 |
72 76 77
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → ( ran 𝑔 ∪ { ∅ } ) Ref 𝑈 ) |
79 |
78
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ { ∅ } ) ) → ( ran 𝑔 ∪ { ∅ } ) Ref 𝑈 ) |
80 |
75 79
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ { ∅ } ) ) → ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) Ref 𝑈 ) |
81 |
|
rnxpss |
⊢ ran ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ⊆ { ∅ } |
82 |
|
sssn |
⊢ ( ran ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ⊆ { ∅ } ↔ ( ran ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) = ∅ ∨ ran ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) = { ∅ } ) ) |
83 |
81 82
|
mpbi |
⊢ ( ran ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) = ∅ ∨ ran ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) = { ∅ } ) |
84 |
|
rnun |
⊢ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ ran ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) |
85 |
|
uneq2 |
⊢ ( ran ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) = ∅ → ( ran 𝑔 ∪ ran ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ ∅ ) ) |
86 |
84 85
|
syl5eq |
⊢ ( ran ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) = ∅ → ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ ∅ ) ) |
87 |
|
un0 |
⊢ ( ran 𝑔 ∪ ∅ ) = ran 𝑔 |
88 |
86 87
|
eqtrdi |
⊢ ( ran ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) = ∅ → ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ran 𝑔 ) |
89 |
|
uneq2 |
⊢ ( ran ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) = { ∅ } → ( ran 𝑔 ∪ ran ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ { ∅ } ) ) |
90 |
84 89
|
syl5eq |
⊢ ( ran ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) = { ∅ } → ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ { ∅ } ) ) |
91 |
88 90
|
orim12i |
⊢ ( ( ran ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) = ∅ ∨ ran ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) = { ∅ } ) → ( ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ran 𝑔 ∨ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ { ∅ } ) ) ) |
92 |
83 91
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → ( ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ran 𝑔 ∨ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ { ∅ } ) ) ) |
93 |
74 80 92
|
mpjaodan |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) Ref 𝑈 ) |
94 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) |
95 |
94
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ran 𝑔 ) → ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) |
96 |
71 95
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ran 𝑔 ) → ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) ∈ ( LocFin ‘ 𝐽 ) ) |
97 |
94
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ { ∅ } ) ) → ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) |
98 |
|
snfi |
⊢ { ∅ } ∈ Fin |
99 |
98
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ { ∅ } ) ) → { ∅ } ∈ Fin ) |
100 |
59
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ { ∅ } ) ) → ∅ ∈ 𝐽 ) |
101 |
100
|
snssd |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ { ∅ } ) ) → { ∅ } ⊆ 𝐽 ) |
102 |
101
|
unissd |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ { ∅ } ) ) → ∪ { ∅ } ⊆ ∪ 𝐽 ) |
103 |
|
lfinun |
⊢ ( ( ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ∧ { ∅ } ∈ Fin ∧ ∪ { ∅ } ⊆ ∪ 𝐽 ) → ( ran 𝑔 ∪ { ∅ } ) ∈ ( LocFin ‘ 𝐽 ) ) |
104 |
97 99 102 103
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ { ∅ } ) ) → ( ran 𝑔 ∪ { ∅ } ) ∈ ( LocFin ‘ 𝐽 ) ) |
105 |
75 104
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) = ( ran 𝑔 ∪ { ∅ } ) ) → ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) ∈ ( LocFin ‘ 𝐽 ) ) |
106 |
96 105 92
|
mpjaodan |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) ∈ ( LocFin ‘ 𝐽 ) ) |
107 |
|
refrel |
⊢ Rel Ref |
108 |
107
|
brrelex2i |
⊢ ( 𝑉 Ref 𝑈 → 𝑈 ∈ V ) |
109 |
|
difexg |
⊢ ( 𝑈 ∈ V → ( 𝑈 ∖ dom 𝑔 ) ∈ V ) |
110 |
5 108 109
|
3syl |
⊢ ( 𝜑 → ( 𝑈 ∖ dom 𝑔 ) ∈ V ) |
111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) → ( 𝑈 ∖ dom 𝑔 ) ∈ V ) |
112 |
|
p0ex |
⊢ { ∅ } ∈ V |
113 |
|
xpexg |
⊢ ( ( ( 𝑈 ∖ dom 𝑔 ) ∈ V ∧ { ∅ } ∈ V ) → ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ∈ V ) |
114 |
112 113
|
mpan2 |
⊢ ( ( 𝑈 ∖ dom 𝑔 ) ∈ V → ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ∈ V ) |
115 |
|
vex |
⊢ 𝑔 ∈ V |
116 |
|
unexg |
⊢ ( ( 𝑔 ∈ V ∧ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ∈ V ) → ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) ∈ V ) |
117 |
115 116
|
mpan |
⊢ ( ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ∈ V → ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) ∈ V ) |
118 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) → ( 𝑓 : 𝑈 ⟶ 𝐽 ↔ ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) : 𝑈 ⟶ 𝐽 ) ) |
119 |
|
rneq |
⊢ ( 𝑓 = ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) → ran 𝑓 = ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) ) |
120 |
119
|
breq1d |
⊢ ( 𝑓 = ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) → ( ran 𝑓 Ref 𝑈 ↔ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) Ref 𝑈 ) ) |
121 |
119
|
eleq1d |
⊢ ( 𝑓 = ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) → ( ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ↔ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) ∈ ( LocFin ‘ 𝐽 ) ) ) |
122 |
118 120 121
|
3anbi123d |
⊢ ( 𝑓 = ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) → ( ( 𝑓 : 𝑈 ⟶ 𝐽 ∧ ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ↔ ( ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) : 𝑈 ⟶ 𝐽 ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) Ref 𝑈 ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) ∈ ( LocFin ‘ 𝐽 ) ) ) ) |
123 |
122
|
spcegv |
⊢ ( ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) ∈ V → ( ( ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) : 𝑈 ⟶ 𝐽 ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) Ref 𝑈 ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) ∈ ( LocFin ‘ 𝐽 ) ) → ∃ 𝑓 ( 𝑓 : 𝑈 ⟶ 𝐽 ∧ ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) ) |
124 |
111 114 117 123
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) → ( ( ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) : 𝑈 ⟶ 𝐽 ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) Ref 𝑈 ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) ∈ ( LocFin ‘ 𝐽 ) ) → ∃ 𝑓 ( 𝑓 : 𝑈 ⟶ 𝐽 ∧ ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) ) |
125 |
124
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) : 𝑈 ⟶ 𝐽 ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) Ref 𝑈 ∧ ran ( 𝑔 ∪ ( ( 𝑈 ∖ dom 𝑔 ) × { ∅ } ) ) ∈ ( LocFin ‘ 𝐽 ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑈 ⟶ 𝐽 ∧ ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) |
126 |
49 70 93 106 125
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) ∧ ( ( Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽 ) ∧ ( ran 𝑔 Ref 𝑈 ∧ ran 𝑔 ∈ ( LocFin ‘ 𝐽 ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑈 ⟶ 𝐽 ∧ ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) |
127 |
48 126
|
exlimddv |
⊢ ( ( 𝜑 ∧ 𝑈 ≠ ∅ ) → ∃ 𝑓 ( 𝑓 : 𝑈 ⟶ 𝐽 ∧ ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) |
128 |
46 127
|
pm2.61dane |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑈 ⟶ 𝐽 ∧ ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) |