Metamath Proof Explorer


Theorem locfinreflem

Description: A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf , it is expressed by exposing a function f from the original cover U , which is taken as the index set. The solution is constructed by building unions, so the same method can be used to prove a similar theorem about closed covers. (Contributed by Thierry Arnoux, 29-Jan-2020)

Ref Expression
Hypotheses locfinref.x 𝑋 = 𝐽
locfinref.1 ( 𝜑𝑈𝐽 )
locfinref.2 ( 𝜑𝑋 = 𝑈 )
locfinref.3 ( 𝜑𝑉𝐽 )
locfinref.4 ( 𝜑𝑉 Ref 𝑈 )
locfinref.5 ( 𝜑𝑉 ∈ ( LocFin ‘ 𝐽 ) )
Assertion locfinreflem ( 𝜑 → ∃ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) )

Proof

Step Hyp Ref Expression
1 locfinref.x 𝑋 = 𝐽
2 locfinref.1 ( 𝜑𝑈𝐽 )
3 locfinref.2 ( 𝜑𝑋 = 𝑈 )
4 locfinref.3 ( 𝜑𝑉𝐽 )
5 locfinref.4 ( 𝜑𝑉 Ref 𝑈 )
6 locfinref.5 ( 𝜑𝑉 ∈ ( LocFin ‘ 𝐽 ) )
7 reff ( 𝑉 ∈ ( LocFin ‘ 𝐽 ) → ( 𝑉 Ref 𝑈 ↔ ( 𝑈 𝑉 ∧ ∃ 𝑔 ( 𝑔 : 𝑉𝑈 ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ) ) )
8 6 7 syl ( 𝜑 → ( 𝑉 Ref 𝑈 ↔ ( 𝑈 𝑉 ∧ ∃ 𝑔 ( 𝑔 : 𝑉𝑈 ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ) ) )
9 5 8 mpbid ( 𝜑 → ( 𝑈 𝑉 ∧ ∃ 𝑔 ( 𝑔 : 𝑉𝑈 ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ) )
10 9 simprd ( 𝜑 → ∃ 𝑔 ( 𝑔 : 𝑉𝑈 ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) )
11 funmpt Fun ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) )
12 11 a1i ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → Fun ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) )
13 eqid ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) = ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) )
14 13 dmmptss dom ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ⊆ ran 𝑔
15 frn ( 𝑔 : 𝑉𝑈 → ran 𝑔𝑈 )
16 15 ad2antlr ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → ran 𝑔𝑈 )
17 14 16 sstrid ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → dom ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ⊆ 𝑈 )
18 locfintop ( 𝑉 ∈ ( LocFin ‘ 𝐽 ) → 𝐽 ∈ Top )
19 6 18 syl ( 𝜑𝐽 ∈ Top )
20 19 ad3antrrr ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → 𝐽 ∈ Top )
21 cnvimass ( 𝑔 “ { 𝑢 } ) ⊆ dom 𝑔
22 fdm ( 𝑔 : 𝑉𝑈 → dom 𝑔 = 𝑉 )
23 22 ad3antlr ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → dom 𝑔 = 𝑉 )
24 21 23 sseqtrid ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → ( 𝑔 “ { 𝑢 } ) ⊆ 𝑉 )
25 4 ad3antrrr ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → 𝑉𝐽 )
26 24 25 sstrd ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → ( 𝑔 “ { 𝑢 } ) ⊆ 𝐽 )
27 uniopn ( ( 𝐽 ∈ Top ∧ ( 𝑔 “ { 𝑢 } ) ⊆ 𝐽 ) → ( 𝑔 “ { 𝑢 } ) ∈ 𝐽 )
28 20 26 27 syl2anc ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → ( 𝑔 “ { 𝑢 } ) ∈ 𝐽 )
29 28 ralrimiva ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → ∀ 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ∈ 𝐽 )
30 13 rnmptss ( ∀ 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ∈ 𝐽 → ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 )
31 29 30 syl ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 )
32 eqid 𝑉 = 𝑉
33 eqid 𝑈 = 𝑈
34 32 33 refbas ( 𝑉 Ref 𝑈 𝑈 = 𝑉 )
35 5 34 syl ( 𝜑 𝑈 = 𝑉 )
36 35 ad2antrr ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → 𝑈 = 𝑉 )
37 nfv 𝑣 ( 𝜑𝑔 : 𝑉𝑈 )
38 nfra1 𝑣𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 )
39 37 38 nfan 𝑣 ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) )
40 nfre1 𝑣𝑣𝑉 𝑥𝑣
41 39 40 nfan 𝑣 ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ ∃ 𝑣𝑉 𝑥𝑣 )
42 ffn ( 𝑔 : 𝑉𝑈𝑔 Fn 𝑉 )
43 42 ad4antlr ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑣𝑉 ) ∧ 𝑥𝑣 ) → 𝑔 Fn 𝑉 )
44 simplr ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑣𝑉 ) ∧ 𝑥𝑣 ) → 𝑣𝑉 )
45 fnfvelrn ( ( 𝑔 Fn 𝑉𝑣𝑉 ) → ( 𝑔𝑣 ) ∈ ran 𝑔 )
46 43 44 45 syl2anc ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑣𝑉 ) ∧ 𝑥𝑣 ) → ( 𝑔𝑣 ) ∈ ran 𝑔 )
47 ssid 𝑣𝑣
48 42 ad3antlr ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑣𝑉 ) → 𝑔 Fn 𝑉 )
49 eqid ( 𝑔𝑣 ) = ( 𝑔𝑣 )
50 fniniseg ( 𝑔 Fn 𝑉 → ( 𝑣 ∈ ( 𝑔 “ { ( 𝑔𝑣 ) } ) ↔ ( 𝑣𝑉 ∧ ( 𝑔𝑣 ) = ( 𝑔𝑣 ) ) ) )
51 50 biimpar ( ( 𝑔 Fn 𝑉 ∧ ( 𝑣𝑉 ∧ ( 𝑔𝑣 ) = ( 𝑔𝑣 ) ) ) → 𝑣 ∈ ( 𝑔 “ { ( 𝑔𝑣 ) } ) )
52 49 51 mpanr2 ( ( 𝑔 Fn 𝑉𝑣𝑉 ) → 𝑣 ∈ ( 𝑔 “ { ( 𝑔𝑣 ) } ) )
53 48 52 sylancom ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑣𝑉 ) → 𝑣 ∈ ( 𝑔 “ { ( 𝑔𝑣 ) } ) )
54 ssuni ( ( 𝑣𝑣𝑣 ∈ ( 𝑔 “ { ( 𝑔𝑣 ) } ) ) → 𝑣 ( 𝑔 “ { ( 𝑔𝑣 ) } ) )
55 47 53 54 sylancr ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑣𝑉 ) → 𝑣 ( 𝑔 “ { ( 𝑔𝑣 ) } ) )
56 55 sselda ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑣𝑉 ) ∧ 𝑥𝑣 ) → 𝑥 ( 𝑔 “ { ( 𝑔𝑣 ) } ) )
57 sneq ( 𝑢 = ( 𝑔𝑣 ) → { 𝑢 } = { ( 𝑔𝑣 ) } )
58 57 imaeq2d ( 𝑢 = ( 𝑔𝑣 ) → ( 𝑔 “ { 𝑢 } ) = ( 𝑔 “ { ( 𝑔𝑣 ) } ) )
59 58 unieqd ( 𝑢 = ( 𝑔𝑣 ) → ( 𝑔 “ { 𝑢 } ) = ( 𝑔 “ { ( 𝑔𝑣 ) } ) )
60 59 eleq2d ( 𝑢 = ( 𝑔𝑣 ) → ( 𝑥 ( 𝑔 “ { 𝑢 } ) ↔ 𝑥 ( 𝑔 “ { ( 𝑔𝑣 ) } ) ) )
61 60 rspcev ( ( ( 𝑔𝑣 ) ∈ ran 𝑔𝑥 ( 𝑔 “ { ( 𝑔𝑣 ) } ) ) → ∃ 𝑢 ∈ ran 𝑔 𝑥 ( 𝑔 “ { 𝑢 } ) )
62 46 56 61 syl2anc ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑣𝑉 ) ∧ 𝑥𝑣 ) → ∃ 𝑢 ∈ ran 𝑔 𝑥 ( 𝑔 “ { 𝑢 } ) )
63 62 adantllr ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ ∃ 𝑣𝑉 𝑥𝑣 ) ∧ 𝑣𝑉 ) ∧ 𝑥𝑣 ) → ∃ 𝑢 ∈ ran 𝑔 𝑥 ( 𝑔 “ { 𝑢 } ) )
64 simpr ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ ∃ 𝑣𝑉 𝑥𝑣 ) → ∃ 𝑣𝑉 𝑥𝑣 )
65 41 63 64 r19.29af ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ ∃ 𝑣𝑉 𝑥𝑣 ) → ∃ 𝑢 ∈ ran 𝑔 𝑥 ( 𝑔 “ { 𝑢 } ) )
66 nfv 𝑣 𝑢 ∈ ran 𝑔
67 39 66 nfan 𝑣 ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 )
68 nfv 𝑣 𝑥 ( 𝑔 “ { 𝑢 } )
69 67 68 nfan 𝑣 ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ( 𝑔 “ { 𝑢 } ) )
70 24 ad3antrrr ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ( 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) ) ∧ 𝑥𝑣 ) → ( 𝑔 “ { 𝑢 } ) ⊆ 𝑉 )
71 simplr ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ( 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) ) ∧ 𝑥𝑣 ) → 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) )
72 70 71 sseldd ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ( 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) ) ∧ 𝑥𝑣 ) → 𝑣𝑉 )
73 simpr ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ( 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) ) ∧ 𝑥𝑣 ) → 𝑥𝑣 )
74 simpr ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ( 𝑔 “ { 𝑢 } ) ) → 𝑥 ( 𝑔 “ { 𝑢 } ) )
75 eluni2 ( 𝑥 ( 𝑔 “ { 𝑢 } ) ↔ ∃ 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) 𝑥𝑣 )
76 74 75 sylib ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ( 𝑔 “ { 𝑢 } ) ) → ∃ 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) 𝑥𝑣 )
77 69 72 73 76 reximd2a ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ( 𝑔 “ { 𝑢 } ) ) → ∃ 𝑣𝑉 𝑥𝑣 )
78 77 r19.29an ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ ∃ 𝑢 ∈ ran 𝑔 𝑥 ( 𝑔 “ { 𝑢 } ) ) → ∃ 𝑣𝑉 𝑥𝑣 )
79 65 78 impbida ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → ( ∃ 𝑣𝑉 𝑥𝑣 ↔ ∃ 𝑢 ∈ ran 𝑔 𝑥 ( 𝑔 “ { 𝑢 } ) ) )
80 eluni2 ( 𝑥 𝑉 ↔ ∃ 𝑣𝑉 𝑥𝑣 )
81 eliun ( 𝑥 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ↔ ∃ 𝑢 ∈ ran 𝑔 𝑥 ( 𝑔 “ { 𝑢 } ) )
82 79 80 81 3bitr4g ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → ( 𝑥 𝑉𝑥 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) )
83 82 eqrdv ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → 𝑉 = 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) )
84 dfiun3g ( ∀ 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ∈ 𝐽 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) = ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) )
85 29 84 syl ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) = ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) )
86 36 83 85 3eqtrd ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → 𝑈 = ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) )
87 15 ad3antlr ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) → ran 𝑔𝑈 )
88 vex 𝑤 ∈ V
89 13 elrnmpt ( 𝑤 ∈ V → ( 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ↔ ∃ 𝑢 ∈ ran 𝑔 𝑤 = ( 𝑔 “ { 𝑢 } ) ) )
90 88 89 mp1i ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → ( 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ↔ ∃ 𝑢 ∈ ran 𝑔 𝑤 = ( 𝑔 “ { 𝑢 } ) ) )
91 90 biimpa ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) → ∃ 𝑢 ∈ ran 𝑔 𝑤 = ( 𝑔 “ { 𝑢 } ) )
92 ssrexv ( ran 𝑔𝑈 → ( ∃ 𝑢 ∈ ran 𝑔 𝑤 = ( 𝑔 “ { 𝑢 } ) → ∃ 𝑢𝑈 𝑤 = ( 𝑔 “ { 𝑢 } ) ) )
93 87 91 92 sylc ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) → ∃ 𝑢𝑈 𝑤 = ( 𝑔 “ { 𝑢 } ) )
94 nfv 𝑢 ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) )
95 nfmpt1 𝑢 ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) )
96 95 nfrn 𝑢 ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) )
97 96 nfcri 𝑢 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) )
98 94 97 nfan 𝑢 ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) )
99 simpr ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢𝑈 ) ∧ 𝑤 = ( 𝑔 “ { 𝑢 } ) ) → 𝑤 = ( 𝑔 “ { 𝑢 } ) )
100 nfv 𝑣 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) )
101 39 100 nfan 𝑣 ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) )
102 nfv 𝑣 𝑢𝑈
103 101 102 nfan 𝑣 ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢𝑈 )
104 nfv 𝑣 𝑤 = ( 𝑔 “ { 𝑢 } )
105 103 104 nfan 𝑣 ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢𝑈 ) ∧ 𝑤 = ( 𝑔 “ { 𝑢 } ) )
106 simp-5r ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢𝑈 ) ∧ 𝑤 = ( 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) ) → ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) )
107 42 ad5antlr ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢𝑈 ) ∧ 𝑤 = ( 𝑔 “ { 𝑢 } ) ) → 𝑔 Fn 𝑉 )
108 fniniseg ( 𝑔 Fn 𝑉 → ( 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) ↔ ( 𝑣𝑉 ∧ ( 𝑔𝑣 ) = 𝑢 ) ) )
109 107 108 syl ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢𝑈 ) ∧ 𝑤 = ( 𝑔 “ { 𝑢 } ) ) → ( 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) ↔ ( 𝑣𝑉 ∧ ( 𝑔𝑣 ) = 𝑢 ) ) )
110 109 biimpa ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢𝑈 ) ∧ 𝑤 = ( 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) ) → ( 𝑣𝑉 ∧ ( 𝑔𝑣 ) = 𝑢 ) )
111 110 simpld ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢𝑈 ) ∧ 𝑤 = ( 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) ) → 𝑣𝑉 )
112 rspa ( ( ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ∧ 𝑣𝑉 ) → 𝑣 ⊆ ( 𝑔𝑣 ) )
113 106 111 112 syl2anc ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢𝑈 ) ∧ 𝑤 = ( 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) ) → 𝑣 ⊆ ( 𝑔𝑣 ) )
114 110 simprd ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢𝑈 ) ∧ 𝑤 = ( 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) ) → ( 𝑔𝑣 ) = 𝑢 )
115 113 114 sseqtrd ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢𝑈 ) ∧ 𝑤 = ( 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) ) → 𝑣𝑢 )
116 115 ex ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢𝑈 ) ∧ 𝑤 = ( 𝑔 “ { 𝑢 } ) ) → ( 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) → 𝑣𝑢 ) )
117 105 116 ralrimi ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢𝑈 ) ∧ 𝑤 = ( 𝑔 “ { 𝑢 } ) ) → ∀ 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) 𝑣𝑢 )
118 unissb ( ( 𝑔 “ { 𝑢 } ) ⊆ 𝑢 ↔ ∀ 𝑣 ∈ ( 𝑔 “ { 𝑢 } ) 𝑣𝑢 )
119 117 118 sylibr ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢𝑈 ) ∧ 𝑤 = ( 𝑔 “ { 𝑢 } ) ) → ( 𝑔 “ { 𝑢 } ) ⊆ 𝑢 )
120 99 119 eqsstrd ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢𝑈 ) ∧ 𝑤 = ( 𝑔 “ { 𝑢 } ) ) → 𝑤𝑢 )
121 120 exp31 ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) → ( 𝑢𝑈 → ( 𝑤 = ( 𝑔 “ { 𝑢 } ) → 𝑤𝑢 ) ) )
122 98 121 reximdai ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) → ( ∃ 𝑢𝑈 𝑤 = ( 𝑔 “ { 𝑢 } ) → ∃ 𝑢𝑈 𝑤𝑢 ) )
123 93 122 mpd ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) → ∃ 𝑢𝑈 𝑤𝑢 )
124 123 ralrimiva ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → ∀ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∃ 𝑢𝑈 𝑤𝑢 )
125 vex 𝑔 ∈ V
126 125 rnex ran 𝑔 ∈ V
127 126 mptex ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∈ V
128 rnexg ( ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∈ V → ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∈ V )
129 127 128 mp1i ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∈ V )
130 eqid ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) = ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) )
131 130 33 isref ( ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∈ V → ( ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ↔ ( 𝑈 = ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∧ ∀ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∃ 𝑢𝑈 𝑤𝑢 ) ) )
132 129 131 syl ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → ( ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ↔ ( 𝑈 = ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∧ ∀ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∃ 𝑢𝑈 𝑤𝑢 ) ) )
133 86 124 132 mpbir2and ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) Ref 𝑈 )
134 19 ad2antrr ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → 𝐽 ∈ Top )
135 3 ad2antrr ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → 𝑋 = 𝑈 )
136 135 86 eqtrd ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → 𝑋 = ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) )
137 nfv 𝑣 𝑥𝑋
138 39 137 nfan 𝑣 ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 )
139 simplr ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ ( 𝑥𝑣 ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ) → 𝑣𝐽 )
140 ffun ( 𝑔 : 𝑉𝑈 → Fun 𝑔 )
141 140 ad6antlr ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) → Fun 𝑔 )
142 imafi ( ( Fun 𝑔 ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) → ( 𝑔 “ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ) ∈ Fin )
143 141 142 sylancom ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) → ( 𝑔 “ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ) ∈ Fin )
144 simp3 ( ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑘 ∈ ran 𝑔𝑤 = ( ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) ) → 𝑤 = ( ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) )
145 sneq ( 𝑢 = 𝑘 → { 𝑢 } = { 𝑘 } )
146 145 imaeq2d ( 𝑢 = 𝑘 → ( 𝑔 “ { 𝑢 } ) = ( 𝑔 “ { 𝑘 } ) )
147 146 unieqd ( 𝑢 = 𝑘 ( 𝑔 “ { 𝑢 } ) = ( 𝑔 “ { 𝑘 } ) )
148 125 cnvex 𝑔 ∈ V
149 imaexg ( 𝑔 ∈ V → ( 𝑔 “ { 𝑘 } ) ∈ V )
150 148 149 ax-mp ( 𝑔 “ { 𝑘 } ) ∈ V
151 150 uniex ( 𝑔 “ { 𝑘 } ) ∈ V
152 147 13 151 fvmpt ( 𝑘 ∈ ran 𝑔 → ( ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) = ( 𝑔 “ { 𝑘 } ) )
153 152 3ad2ant2 ( ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑘 ∈ ran 𝑔𝑤 = ( ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) ) → ( ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) = ( 𝑔 “ { 𝑘 } ) )
154 144 153 eqtrd ( ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑘 ∈ ran 𝑔𝑤 = ( ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) ) → 𝑤 = ( 𝑔 “ { 𝑘 } ) )
155 154 ineq1d ( ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑘 ∈ ran 𝑔𝑤 = ( ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) ) → ( 𝑤𝑣 ) = ( ( 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) )
156 155 neeq1d ( ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑘 ∈ ran 𝑔𝑤 = ( ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) ) → ( ( 𝑤𝑣 ) ≠ ∅ ↔ ( ( 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) ≠ ∅ ) )
157 126 a1i ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) → ran 𝑔 ∈ V )
158 imaexg ( 𝑔 ∈ V → ( 𝑔 “ { 𝑢 } ) ∈ V )
159 148 158 ax-mp ( 𝑔 “ { 𝑢 } ) ∈ V
160 159 uniex ( 𝑔 “ { 𝑢 } ) ∈ V
161 160 13 fnmpti ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) Fn ran 𝑔
162 dffn4 ( ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) Fn ran 𝑔 ↔ ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) : ran 𝑔onto→ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) )
163 161 162 mpbi ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) : ran 𝑔onto→ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) )
164 163 a1i ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) → ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) : ran 𝑔onto→ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) )
165 156 157 164 rabfodom ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤𝑣 ) ≠ ∅ } ≼ { 𝑘 ∈ ran 𝑔 ∣ ( ( 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) ≠ ∅ } )
166 sneq ( 𝑘 = 𝑢 → { 𝑘 } = { 𝑢 } )
167 166 imaeq2d ( 𝑘 = 𝑢 → ( 𝑔 “ { 𝑘 } ) = ( 𝑔 “ { 𝑢 } ) )
168 167 unieqd ( 𝑘 = 𝑢 ( 𝑔 “ { 𝑘 } ) = ( 𝑔 “ { 𝑢 } ) )
169 168 ineq1d ( 𝑘 = 𝑢 → ( ( 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) = ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) )
170 169 neeq1d ( 𝑘 = 𝑢 → ( ( ( 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) ≠ ∅ ↔ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) )
171 170 cbvrabv { 𝑘 ∈ ran 𝑔 ∣ ( ( 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) ≠ ∅ } = { 𝑢 ∈ ran 𝑔 ∣ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ }
172 165 171 breqtrdi ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } )
173 126 rabex { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ( 𝑔𝑘 ) = 𝑢 } ∈ V
174 nfv 𝑗 ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 )
175 nfrab1 𝑗 { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ }
176 175 nfel1 𝑗 { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin
177 174 176 nfan 𝑗 ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin )
178 nfv 𝑗 𝑢 ∈ ran 𝑔
179 177 178 nfan 𝑗 ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 )
180 nfv 𝑗 ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅
181 179 180 nfan 𝑗 ( ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ )
182 nfv 𝑗 ( 𝑔𝑘 ) = 𝑢
183 175 182 nfrex 𝑗𝑘 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ( 𝑔𝑘 ) = 𝑢
184 42 ad5antlr ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) → 𝑔 Fn 𝑉 )
185 184 ad5antr ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗𝑣 ) ≠ ∅ ) → 𝑔 Fn 𝑉 )
186 simplr ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗𝑣 ) ≠ ∅ ) → 𝑗 ∈ ( 𝑔 “ { 𝑢 } ) )
187 fniniseg ( 𝑔 Fn 𝑉 → ( 𝑗 ∈ ( 𝑔 “ { 𝑢 } ) ↔ ( 𝑗𝑉 ∧ ( 𝑔𝑗 ) = 𝑢 ) ) )
188 187 biimpa ( ( 𝑔 Fn 𝑉𝑗 ∈ ( 𝑔 “ { 𝑢 } ) ) → ( 𝑗𝑉 ∧ ( 𝑔𝑗 ) = 𝑢 ) )
189 185 186 188 syl2anc ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗𝑣 ) ≠ ∅ ) → ( 𝑗𝑉 ∧ ( 𝑔𝑗 ) = 𝑢 ) )
190 189 simpld ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗𝑣 ) ≠ ∅ ) → 𝑗𝑉 )
191 simpr ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗𝑣 ) ≠ ∅ ) → ( 𝑗𝑣 ) ≠ ∅ )
192 rabid ( 𝑗 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ↔ ( 𝑗𝑉 ∧ ( 𝑗𝑣 ) ≠ ∅ ) )
193 190 191 192 sylanbrc ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗𝑣 ) ≠ ∅ ) → 𝑗 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } )
194 189 simprd ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗𝑣 ) ≠ ∅ ) → ( 𝑔𝑗 ) = 𝑢 )
195 fveqeq2 ( 𝑘 = 𝑗 → ( ( 𝑔𝑘 ) = 𝑢 ↔ ( 𝑔𝑗 ) = 𝑢 ) )
196 195 rspcev ( ( 𝑗 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∧ ( 𝑔𝑗 ) = 𝑢 ) → ∃ 𝑘 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ( 𝑔𝑘 ) = 𝑢 )
197 193 194 196 syl2anc ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗𝑣 ) ≠ ∅ ) → ∃ 𝑘 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ( 𝑔𝑘 ) = 𝑢 )
198 uniinn0 ( ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ↔ ∃ 𝑗 ∈ ( 𝑔 “ { 𝑢 } ) ( 𝑗𝑣 ) ≠ ∅ )
199 198 biimpi ( ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ → ∃ 𝑗 ∈ ( 𝑔 “ { 𝑢 } ) ( 𝑗𝑣 ) ≠ ∅ )
200 199 adantl ( ( ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) → ∃ 𝑗 ∈ ( 𝑔 “ { 𝑢 } ) ( 𝑗𝑣 ) ≠ ∅ )
201 181 183 197 200 r19.29af2 ( ( ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) → ∃ 𝑘 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ( 𝑔𝑘 ) = 𝑢 )
202 201 ex ( ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) → ( ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ → ∃ 𝑘 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ( 𝑔𝑘 ) = 𝑢 ) )
203 202 ss2rabdv ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑢 ∈ ran 𝑔 ∣ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ⊆ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ( 𝑔𝑘 ) = 𝑢 } )
204 ssdomg ( { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ( 𝑔𝑘 ) = 𝑢 } ∈ V → ( { 𝑢 ∈ ran 𝑔 ∣ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ⊆ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ( 𝑔𝑘 ) = 𝑢 } → { 𝑢 ∈ ran 𝑔 ∣ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ( 𝑔𝑘 ) = 𝑢 } ) )
205 173 203 204 mpsyl ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑢 ∈ ran 𝑔 ∣ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ( 𝑔𝑘 ) = 𝑢 } )
206 domtr ( ( { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ∧ { 𝑢 ∈ ran 𝑔 ∣ ( ( 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ( 𝑔𝑘 ) = 𝑢 } ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ( 𝑔𝑘 ) = 𝑢 } )
207 172 205 206 syl2anc ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ( 𝑔𝑘 ) = 𝑢 } )
208 184 adantr ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) → 𝑔 Fn 𝑉 )
209 dffn3 ( 𝑔 Fn 𝑉𝑔 : 𝑉 ⟶ ran 𝑔 )
210 209 biimpi ( 𝑔 Fn 𝑉𝑔 : 𝑉 ⟶ ran 𝑔 )
211 ssrab2 { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ⊆ 𝑉
212 fimarab ( ( 𝑔 : 𝑉 ⟶ ran 𝑔 ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ⊆ 𝑉 ) → ( 𝑔 “ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ) = { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ( 𝑔𝑘 ) = 𝑢 } )
213 211 212 mpan2 ( 𝑔 : 𝑉 ⟶ ran 𝑔 → ( 𝑔 “ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ) = { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ( 𝑔𝑘 ) = 𝑢 } )
214 208 210 213 3syl ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) → ( 𝑔 “ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ) = { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ( 𝑔𝑘 ) = 𝑢 } )
215 207 214 breqtrrd ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤𝑣 ) ≠ ∅ } ≼ ( 𝑔 “ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ) )
216 domfi ( ( ( 𝑔 “ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ) ∈ Fin ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤𝑣 ) ≠ ∅ } ≼ ( 𝑔 “ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ) ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤𝑣 ) ≠ ∅ } ∈ Fin )
217 143 215 216 syl2anc ( ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤𝑣 ) ≠ ∅ } ∈ Fin )
218 217 ex ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ 𝑥𝑣 ) → ( { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤𝑣 ) ≠ ∅ } ∈ Fin ) )
219 218 imdistanda ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) → ( ( 𝑥𝑣 ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) → ( 𝑥𝑣 ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤𝑣 ) ≠ ∅ } ∈ Fin ) ) )
220 219 imp ( ( ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) ∧ 𝑣𝐽 ) ∧ ( 𝑥𝑣 ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ) → ( 𝑥𝑣 ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤𝑣 ) ≠ ∅ } ∈ Fin ) )
221 simplll ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) → 𝜑 )
222 1 32 islocfin ( 𝑉 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = 𝑉 ∧ ∀ 𝑥𝑋𝑣𝐽 ( 𝑥𝑣 ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ) )
223 6 222 sylib ( 𝜑 → ( 𝐽 ∈ Top ∧ 𝑋 = 𝑉 ∧ ∀ 𝑥𝑋𝑣𝐽 ( 𝑥𝑣 ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) ) )
224 223 simp3d ( 𝜑 → ∀ 𝑥𝑋𝑣𝐽 ( 𝑥𝑣 ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) )
225 224 r19.21bi ( ( 𝜑𝑥𝑋 ) → ∃ 𝑣𝐽 ( 𝑥𝑣 ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) )
226 221 225 sylancom ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) → ∃ 𝑣𝐽 ( 𝑥𝑣 ∧ { 𝑗𝑉 ∣ ( 𝑗𝑣 ) ≠ ∅ } ∈ Fin ) )
227 138 139 220 226 reximd2a ( ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) ∧ 𝑥𝑋 ) → ∃ 𝑣𝐽 ( 𝑥𝑣 ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤𝑣 ) ≠ ∅ } ∈ Fin ) )
228 227 ralrimiva ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → ∀ 𝑥𝑋𝑣𝐽 ( 𝑥𝑣 ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤𝑣 ) ≠ ∅ } ∈ Fin ) )
229 1 130 islocfin ( ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∧ ∀ 𝑥𝑋𝑣𝐽 ( 𝑥𝑣 ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤𝑣 ) ≠ ∅ } ∈ Fin ) ) )
230 134 136 228 229 syl3anbrc ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) )
231 funeq ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) → ( Fun 𝑓 ↔ Fun ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ) )
232 dmeq ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) → dom 𝑓 = dom ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) )
233 232 sseq1d ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) → ( dom 𝑓𝑈 ↔ dom ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ⊆ 𝑈 ) )
234 rneq ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) → ran 𝑓 = ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) )
235 234 sseq1d ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) → ( ran 𝑓𝐽 ↔ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 ) )
236 231 233 235 3anbi123d ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) → ( ( Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽 ) ↔ ( Fun ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∧ dom ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ⊆ 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 ) ) )
237 234 breq1d ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) → ( ran 𝑓 Ref 𝑈 ↔ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ) )
238 234 eleq1d ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) → ( ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ↔ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) ) )
239 237 238 anbi12d ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) → ( ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ↔ ( ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) ) ) )
240 236 239 anbi12d ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) → ( ( ( Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) ↔ ( ( Fun ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∧ dom ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ⊆ 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 ) ∧ ( ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) ) ) ) )
241 127 240 spcev ( ( ( Fun ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∧ dom ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ⊆ 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 ) ∧ ( ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ( 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) ) ) → ∃ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) )
242 12 17 31 133 230 241 syl32anc ( ( ( 𝜑𝑔 : 𝑉𝑈 ) ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → ∃ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) )
243 242 expl ( 𝜑 → ( ( 𝑔 : 𝑉𝑈 ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → ∃ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) ) )
244 243 exlimdv ( 𝜑 → ( ∃ 𝑔 ( 𝑔 : 𝑉𝑈 ∧ ∀ 𝑣𝑉 𝑣 ⊆ ( 𝑔𝑣 ) ) → ∃ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) ) )
245 10 244 mpd ( 𝜑 → ∃ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) )