Step |
Hyp |
Ref |
Expression |
1 |
|
locfinref.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
locfinref.1 |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) |
3 |
|
locfinref.2 |
⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) |
4 |
|
locfinref.3 |
⊢ ( 𝜑 → 𝑉 ⊆ 𝐽 ) |
5 |
|
locfinref.4 |
⊢ ( 𝜑 → 𝑉 Ref 𝑈 ) |
6 |
|
locfinref.5 |
⊢ ( 𝜑 → 𝑉 ∈ ( LocFin ‘ 𝐽 ) ) |
7 |
|
reff |
⊢ ( 𝑉 ∈ ( LocFin ‘ 𝐽 ) → ( 𝑉 Ref 𝑈 ↔ ( ∪ 𝑈 ⊆ ∪ 𝑉 ∧ ∃ 𝑔 ( 𝑔 : 𝑉 ⟶ 𝑈 ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → ( 𝑉 Ref 𝑈 ↔ ( ∪ 𝑈 ⊆ ∪ 𝑉 ∧ ∃ 𝑔 ( 𝑔 : 𝑉 ⟶ 𝑈 ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) ) ) |
9 |
5 8
|
mpbid |
⊢ ( 𝜑 → ( ∪ 𝑈 ⊆ ∪ 𝑉 ∧ ∃ 𝑔 ( 𝑔 : 𝑉 ⟶ 𝑈 ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) ) |
10 |
9
|
simprd |
⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : 𝑉 ⟶ 𝑈 ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) |
11 |
|
funmpt |
⊢ Fun ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
12 |
11
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → Fun ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
13 |
|
eqid |
⊢ ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
14 |
13
|
dmmptss |
⊢ dom ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ ran 𝑔 |
15 |
|
frn |
⊢ ( 𝑔 : 𝑉 ⟶ 𝑈 → ran 𝑔 ⊆ 𝑈 ) |
16 |
15
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ran 𝑔 ⊆ 𝑈 ) |
17 |
14 16
|
sstrid |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → dom ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝑈 ) |
18 |
|
locfintop |
⊢ ( 𝑉 ∈ ( LocFin ‘ 𝐽 ) → 𝐽 ∈ Top ) |
19 |
6 18
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
20 |
19
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → 𝐽 ∈ Top ) |
21 |
|
cnvimass |
⊢ ( ◡ 𝑔 “ { 𝑢 } ) ⊆ dom 𝑔 |
22 |
|
fdm |
⊢ ( 𝑔 : 𝑉 ⟶ 𝑈 → dom 𝑔 = 𝑉 ) |
23 |
22
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → dom 𝑔 = 𝑉 ) |
24 |
21 23
|
sseqtrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → ( ◡ 𝑔 “ { 𝑢 } ) ⊆ 𝑉 ) |
25 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → 𝑉 ⊆ 𝐽 ) |
26 |
24 25
|
sstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → ( ◡ 𝑔 “ { 𝑢 } ) ⊆ 𝐽 ) |
27 |
|
uniopn |
⊢ ( ( 𝐽 ∈ Top ∧ ( ◡ 𝑔 “ { 𝑢 } ) ⊆ 𝐽 ) → ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∈ 𝐽 ) |
28 |
20 26 27
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∈ 𝐽 ) |
29 |
28
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∀ 𝑢 ∈ ran 𝑔 ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∈ 𝐽 ) |
30 |
13
|
rnmptss |
⊢ ( ∀ 𝑢 ∈ ran 𝑔 ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∈ 𝐽 → ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 ) |
31 |
29 30
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 ) |
32 |
|
eqid |
⊢ ∪ 𝑉 = ∪ 𝑉 |
33 |
|
eqid |
⊢ ∪ 𝑈 = ∪ 𝑈 |
34 |
32 33
|
refbas |
⊢ ( 𝑉 Ref 𝑈 → ∪ 𝑈 = ∪ 𝑉 ) |
35 |
5 34
|
syl |
⊢ ( 𝜑 → ∪ 𝑈 = ∪ 𝑉 ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∪ 𝑈 = ∪ 𝑉 ) |
37 |
|
nfv |
⊢ Ⅎ 𝑣 ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) |
38 |
|
nfra1 |
⊢ Ⅎ 𝑣 ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) |
39 |
37 38
|
nfan |
⊢ Ⅎ 𝑣 ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) |
40 |
|
nfre1 |
⊢ Ⅎ 𝑣 ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 |
41 |
39 40
|
nfan |
⊢ Ⅎ 𝑣 ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ) |
42 |
|
ffn |
⊢ ( 𝑔 : 𝑉 ⟶ 𝑈 → 𝑔 Fn 𝑉 ) |
43 |
42
|
ad4antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑣 ) → 𝑔 Fn 𝑉 ) |
44 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑣 ) → 𝑣 ∈ 𝑉 ) |
45 |
|
fnfvelrn |
⊢ ( ( 𝑔 Fn 𝑉 ∧ 𝑣 ∈ 𝑉 ) → ( 𝑔 ‘ 𝑣 ) ∈ ran 𝑔 ) |
46 |
43 44 45
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑣 ) → ( 𝑔 ‘ 𝑣 ) ∈ ran 𝑔 ) |
47 |
|
ssid |
⊢ 𝑣 ⊆ 𝑣 |
48 |
42
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑔 Fn 𝑉 ) |
49 |
|
eqid |
⊢ ( 𝑔 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) |
50 |
|
fniniseg |
⊢ ( 𝑔 Fn 𝑉 → ( 𝑣 ∈ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ↔ ( 𝑣 ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) ) ) |
51 |
50
|
biimpar |
⊢ ( ( 𝑔 Fn 𝑉 ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) ) → 𝑣 ∈ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) |
52 |
49 51
|
mpanr2 |
⊢ ( ( 𝑔 Fn 𝑉 ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) |
53 |
48 52
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) |
54 |
|
ssuni |
⊢ ( ( 𝑣 ⊆ 𝑣 ∧ 𝑣 ∈ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) → 𝑣 ⊆ ∪ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) |
55 |
47 53 54
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ⊆ ∪ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) |
56 |
55
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑣 ) → 𝑥 ∈ ∪ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) |
57 |
|
sneq |
⊢ ( 𝑢 = ( 𝑔 ‘ 𝑣 ) → { 𝑢 } = { ( 𝑔 ‘ 𝑣 ) } ) |
58 |
57
|
imaeq2d |
⊢ ( 𝑢 = ( 𝑔 ‘ 𝑣 ) → ( ◡ 𝑔 “ { 𝑢 } ) = ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) |
59 |
58
|
unieqd |
⊢ ( 𝑢 = ( 𝑔 ‘ 𝑣 ) → ∪ ( ◡ 𝑔 “ { 𝑢 } ) = ∪ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) |
60 |
59
|
eleq2d |
⊢ ( 𝑢 = ( 𝑔 ‘ 𝑣 ) → ( 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ↔ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) ) |
61 |
60
|
rspcev |
⊢ ( ( ( 𝑔 ‘ 𝑣 ) ∈ ran 𝑔 ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) → ∃ 𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
62 |
46 56 61
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑣 ) → ∃ 𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
63 |
62
|
adantllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑣 ) → ∃ 𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
64 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ) → ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ) |
65 |
41 63 64
|
r19.29af |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ) → ∃ 𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
66 |
|
nfv |
⊢ Ⅎ 𝑣 𝑢 ∈ ran 𝑔 |
67 |
39 66
|
nfan |
⊢ Ⅎ 𝑣 ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) |
68 |
|
nfv |
⊢ Ⅎ 𝑣 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) |
69 |
67 68
|
nfan |
⊢ Ⅎ 𝑣 ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
70 |
24
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑥 ∈ 𝑣 ) → ( ◡ 𝑔 “ { 𝑢 } ) ⊆ 𝑉 ) |
71 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑥 ∈ 𝑣 ) → 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) |
72 |
70 71
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑥 ∈ 𝑣 ) → 𝑣 ∈ 𝑉 ) |
73 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑥 ∈ 𝑣 ) → 𝑥 ∈ 𝑣 ) |
74 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
75 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ↔ ∃ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) 𝑥 ∈ 𝑣 ) |
76 |
74 75
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ∃ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) 𝑥 ∈ 𝑣 ) |
77 |
69 72 73 76
|
reximd2a |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ) |
78 |
77
|
r19.29an |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ ∃ 𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ) |
79 |
65 78
|
impbida |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ( ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ↔ ∃ 𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
80 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝑉 ↔ ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ) |
81 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑢 ∈ ran 𝑔 ∪ ( ◡ 𝑔 “ { 𝑢 } ) ↔ ∃ 𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
82 |
79 80 81
|
3bitr4g |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ( 𝑥 ∈ ∪ 𝑉 ↔ 𝑥 ∈ ∪ 𝑢 ∈ ran 𝑔 ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
83 |
82
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∪ 𝑉 = ∪ 𝑢 ∈ ran 𝑔 ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
84 |
|
dfiun3g |
⊢ ( ∀ 𝑢 ∈ ran 𝑔 ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∈ 𝐽 → ∪ 𝑢 ∈ ran 𝑔 ∪ ( ◡ 𝑔 “ { 𝑢 } ) = ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
85 |
29 84
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∪ 𝑢 ∈ ran 𝑔 ∪ ( ◡ 𝑔 “ { 𝑢 } ) = ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
86 |
36 83 85
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∪ 𝑈 = ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
87 |
15
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) → ran 𝑔 ⊆ 𝑈 ) |
88 |
|
vex |
⊢ 𝑤 ∈ V |
89 |
13
|
elrnmpt |
⊢ ( 𝑤 ∈ V → ( 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ↔ ∃ 𝑢 ∈ ran 𝑔 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
90 |
88 89
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ( 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ↔ ∃ 𝑢 ∈ ran 𝑔 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
91 |
90
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) → ∃ 𝑢 ∈ ran 𝑔 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
92 |
|
ssrexv |
⊢ ( ran 𝑔 ⊆ 𝑈 → ( ∃ 𝑢 ∈ ran 𝑔 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) → ∃ 𝑢 ∈ 𝑈 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
93 |
87 91 92
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) → ∃ 𝑢 ∈ 𝑈 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
94 |
|
nfv |
⊢ Ⅎ 𝑢 ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) |
95 |
|
nfmpt1 |
⊢ Ⅎ 𝑢 ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
96 |
95
|
nfrn |
⊢ Ⅎ 𝑢 ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
97 |
96
|
nfcri |
⊢ Ⅎ 𝑢 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
98 |
94 97
|
nfan |
⊢ Ⅎ 𝑢 ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
99 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
100 |
|
nfv |
⊢ Ⅎ 𝑣 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
101 |
39 100
|
nfan |
⊢ Ⅎ 𝑣 ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
102 |
|
nfv |
⊢ Ⅎ 𝑣 𝑢 ∈ 𝑈 |
103 |
101 102
|
nfan |
⊢ Ⅎ 𝑣 ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) |
104 |
|
nfv |
⊢ Ⅎ 𝑣 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) |
105 |
103 104
|
nfan |
⊢ Ⅎ 𝑣 ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
106 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) → ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) |
107 |
42
|
ad5antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → 𝑔 Fn 𝑉 ) |
108 |
|
fniniseg |
⊢ ( 𝑔 Fn 𝑉 → ( 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ↔ ( 𝑣 ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑣 ) = 𝑢 ) ) ) |
109 |
107 108
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ↔ ( 𝑣 ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑣 ) = 𝑢 ) ) ) |
110 |
109
|
biimpa |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( 𝑣 ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑣 ) = 𝑢 ) ) |
111 |
110
|
simpld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) → 𝑣 ∈ 𝑉 ) |
112 |
|
rspa |
⊢ ( ( ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) |
113 |
106 111 112
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) → 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) |
114 |
110
|
simprd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( 𝑔 ‘ 𝑣 ) = 𝑢 ) |
115 |
113 114
|
sseqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) → 𝑣 ⊆ 𝑢 ) |
116 |
115
|
ex |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) → 𝑣 ⊆ 𝑢 ) ) |
117 |
105 116
|
ralrimi |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ∀ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) 𝑣 ⊆ 𝑢 ) |
118 |
|
unissb |
⊢ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ⊆ 𝑢 ↔ ∀ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) 𝑣 ⊆ 𝑢 ) |
119 |
117 118
|
sylibr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ∪ ( ◡ 𝑔 “ { 𝑢 } ) ⊆ 𝑢 ) |
120 |
99 119
|
eqsstrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → 𝑤 ⊆ 𝑢 ) |
121 |
120
|
exp31 |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) → ( 𝑢 ∈ 𝑈 → ( 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) → 𝑤 ⊆ 𝑢 ) ) ) |
122 |
98 121
|
reximdai |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) → ( ∃ 𝑢 ∈ 𝑈 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) → ∃ 𝑢 ∈ 𝑈 𝑤 ⊆ 𝑢 ) ) |
123 |
93 122
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) → ∃ 𝑢 ∈ 𝑈 𝑤 ⊆ 𝑢 ) |
124 |
123
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∀ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∃ 𝑢 ∈ 𝑈 𝑤 ⊆ 𝑢 ) |
125 |
|
vex |
⊢ 𝑔 ∈ V |
126 |
125
|
rnex |
⊢ ran 𝑔 ∈ V |
127 |
126
|
mptex |
⊢ ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ V |
128 |
|
rnexg |
⊢ ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ V → ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ V ) |
129 |
127 128
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ V ) |
130 |
|
eqid |
⊢ ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) = ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
131 |
130 33
|
isref |
⊢ ( ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ V → ( ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ↔ ( ∪ 𝑈 = ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ∀ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∃ 𝑢 ∈ 𝑈 𝑤 ⊆ 𝑢 ) ) ) |
132 |
129 131
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ( ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ↔ ( ∪ 𝑈 = ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ∀ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∃ 𝑢 ∈ 𝑈 𝑤 ⊆ 𝑢 ) ) ) |
133 |
86 124 132
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ) |
134 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → 𝐽 ∈ Top ) |
135 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → 𝑋 = ∪ 𝑈 ) |
136 |
135 86
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → 𝑋 = ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
137 |
|
nfv |
⊢ Ⅎ 𝑣 𝑥 ∈ 𝑋 |
138 |
39 137
|
nfan |
⊢ Ⅎ 𝑣 ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) |
139 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ ( 𝑥 ∈ 𝑣 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) → 𝑣 ∈ 𝐽 ) |
140 |
|
ffun |
⊢ ( 𝑔 : 𝑉 ⟶ 𝑈 → Fun 𝑔 ) |
141 |
140
|
ad6antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → Fun 𝑔 ) |
142 |
|
imafi |
⊢ ( ( Fun 𝑔 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → ( 𝑔 “ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) ∈ Fin ) |
143 |
141 142
|
sylancom |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → ( 𝑔 “ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) ∈ Fin ) |
144 |
|
simp3 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑘 ∈ ran 𝑔 ∧ 𝑤 = ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) ) → 𝑤 = ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) ) |
145 |
|
sneq |
⊢ ( 𝑢 = 𝑘 → { 𝑢 } = { 𝑘 } ) |
146 |
145
|
imaeq2d |
⊢ ( 𝑢 = 𝑘 → ( ◡ 𝑔 “ { 𝑢 } ) = ( ◡ 𝑔 “ { 𝑘 } ) ) |
147 |
146
|
unieqd |
⊢ ( 𝑢 = 𝑘 → ∪ ( ◡ 𝑔 “ { 𝑢 } ) = ∪ ( ◡ 𝑔 “ { 𝑘 } ) ) |
148 |
125
|
cnvex |
⊢ ◡ 𝑔 ∈ V |
149 |
|
imaexg |
⊢ ( ◡ 𝑔 ∈ V → ( ◡ 𝑔 “ { 𝑘 } ) ∈ V ) |
150 |
148 149
|
ax-mp |
⊢ ( ◡ 𝑔 “ { 𝑘 } ) ∈ V |
151 |
150
|
uniex |
⊢ ∪ ( ◡ 𝑔 “ { 𝑘 } ) ∈ V |
152 |
147 13 151
|
fvmpt |
⊢ ( 𝑘 ∈ ran 𝑔 → ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) = ∪ ( ◡ 𝑔 “ { 𝑘 } ) ) |
153 |
152
|
3ad2ant2 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑘 ∈ ran 𝑔 ∧ 𝑤 = ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) ) → ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) = ∪ ( ◡ 𝑔 “ { 𝑘 } ) ) |
154 |
144 153
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑘 ∈ ran 𝑔 ∧ 𝑤 = ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) ) → 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑘 } ) ) |
155 |
154
|
ineq1d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑘 ∈ ran 𝑔 ∧ 𝑤 = ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) ) → ( 𝑤 ∩ 𝑣 ) = ( ∪ ( ◡ 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) ) |
156 |
155
|
neeq1d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑘 ∈ ran 𝑔 ∧ 𝑤 = ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) ) → ( ( 𝑤 ∩ 𝑣 ) ≠ ∅ ↔ ( ∪ ( ◡ 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) ≠ ∅ ) ) |
157 |
126
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → ran 𝑔 ∈ V ) |
158 |
|
imaexg |
⊢ ( ◡ 𝑔 ∈ V → ( ◡ 𝑔 “ { 𝑢 } ) ∈ V ) |
159 |
148 158
|
ax-mp |
⊢ ( ◡ 𝑔 “ { 𝑢 } ) ∈ V |
160 |
159
|
uniex |
⊢ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∈ V |
161 |
160 13
|
fnmpti |
⊢ ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Fn ran 𝑔 |
162 |
|
dffn4 |
⊢ ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Fn ran 𝑔 ↔ ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) : ran 𝑔 –onto→ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
163 |
161 162
|
mpbi |
⊢ ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) : ran 𝑔 –onto→ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
164 |
163
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) : ran 𝑔 –onto→ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
165 |
156 157 164
|
rabfodom |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑘 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) ≠ ∅ } ) |
166 |
|
sneq |
⊢ ( 𝑘 = 𝑢 → { 𝑘 } = { 𝑢 } ) |
167 |
166
|
imaeq2d |
⊢ ( 𝑘 = 𝑢 → ( ◡ 𝑔 “ { 𝑘 } ) = ( ◡ 𝑔 “ { 𝑢 } ) ) |
168 |
167
|
unieqd |
⊢ ( 𝑘 = 𝑢 → ∪ ( ◡ 𝑔 “ { 𝑘 } ) = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
169 |
168
|
ineq1d |
⊢ ( 𝑘 = 𝑢 → ( ∪ ( ◡ 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) = ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ) |
170 |
169
|
neeq1d |
⊢ ( 𝑘 = 𝑢 → ( ( ∪ ( ◡ 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) ≠ ∅ ↔ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ) |
171 |
170
|
cbvrabv |
⊢ { 𝑘 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) ≠ ∅ } = { 𝑢 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } |
172 |
165 171
|
breqtrdi |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ) |
173 |
126
|
rabex |
⊢ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ∈ V |
174 |
|
nfv |
⊢ Ⅎ 𝑗 ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) |
175 |
|
nfrab1 |
⊢ Ⅎ 𝑗 { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } |
176 |
175
|
nfel1 |
⊢ Ⅎ 𝑗 { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin |
177 |
174 176
|
nfan |
⊢ Ⅎ 𝑗 ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) |
178 |
|
nfv |
⊢ Ⅎ 𝑗 𝑢 ∈ ran 𝑔 |
179 |
177 178
|
nfan |
⊢ Ⅎ 𝑗 ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) |
180 |
|
nfv |
⊢ Ⅎ 𝑗 ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ |
181 |
179 180
|
nfan |
⊢ Ⅎ 𝑗 ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) |
182 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝑔 ‘ 𝑘 ) = 𝑢 |
183 |
175 182
|
nfrexw |
⊢ Ⅎ 𝑗 ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 |
184 |
42
|
ad5antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → 𝑔 Fn 𝑉 ) |
185 |
184
|
ad5antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) → 𝑔 Fn 𝑉 ) |
186 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) → 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) |
187 |
|
fniniseg |
⊢ ( 𝑔 Fn 𝑉 → ( 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ↔ ( 𝑗 ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑗 ) = 𝑢 ) ) ) |
188 |
187
|
biimpa |
⊢ ( ( 𝑔 Fn 𝑉 ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( 𝑗 ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑗 ) = 𝑢 ) ) |
189 |
185 186 188
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) → ( 𝑗 ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑗 ) = 𝑢 ) ) |
190 |
189
|
simpld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) → 𝑗 ∈ 𝑉 ) |
191 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) → ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) |
192 |
|
rabid |
⊢ ( 𝑗 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ↔ ( 𝑗 ∈ 𝑉 ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) ) |
193 |
190 191 192
|
sylanbrc |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) → 𝑗 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) |
194 |
189
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) → ( 𝑔 ‘ 𝑗 ) = 𝑢 ) |
195 |
|
fveqeq2 |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑔 ‘ 𝑘 ) = 𝑢 ↔ ( 𝑔 ‘ 𝑗 ) = 𝑢 ) ) |
196 |
195
|
rspcev |
⊢ ( ( 𝑗 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∧ ( 𝑔 ‘ 𝑗 ) = 𝑢 ) → ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 ) |
197 |
193 194 196
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) → ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 ) |
198 |
|
uniinn0 |
⊢ ( ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ↔ ∃ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) |
199 |
198
|
biimpi |
⊢ ( ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ → ∃ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) |
200 |
199
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) → ∃ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) |
201 |
181 183 197 200
|
r19.29af2 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) → ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 ) |
202 |
201
|
ex |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) → ( ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ → ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 ) ) |
203 |
202
|
ss2rabdv |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑢 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ⊆ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) |
204 |
|
ssdomg |
⊢ ( { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ∈ V → ( { 𝑢 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ⊆ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } → { 𝑢 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) ) |
205 |
173 203 204
|
mpsyl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑢 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) |
206 |
|
domtr |
⊢ ( ( { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ∧ { 𝑢 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) |
207 |
172 205 206
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) |
208 |
184
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → 𝑔 Fn 𝑉 ) |
209 |
|
dffn3 |
⊢ ( 𝑔 Fn 𝑉 ↔ 𝑔 : 𝑉 ⟶ ran 𝑔 ) |
210 |
209
|
biimpi |
⊢ ( 𝑔 Fn 𝑉 → 𝑔 : 𝑉 ⟶ ran 𝑔 ) |
211 |
|
ssrab2 |
⊢ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ⊆ 𝑉 |
212 |
|
fimarab |
⊢ ( ( 𝑔 : 𝑉 ⟶ ran 𝑔 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ⊆ 𝑉 ) → ( 𝑔 “ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) = { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) |
213 |
211 212
|
mpan2 |
⊢ ( 𝑔 : 𝑉 ⟶ ran 𝑔 → ( 𝑔 “ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) = { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) |
214 |
208 210 213
|
3syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → ( 𝑔 “ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) = { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) |
215 |
207 214
|
breqtrrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ≼ ( 𝑔 “ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) ) |
216 |
|
domfi |
⊢ ( ( ( 𝑔 “ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) ∈ Fin ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ≼ ( 𝑔 “ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) |
217 |
143 215 216
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) |
218 |
217
|
ex |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → ( { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) |
219 |
218
|
imdistanda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑣 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → ( 𝑥 ∈ 𝑣 ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) ) |
220 |
219
|
imp |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ ( 𝑥 ∈ 𝑣 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) → ( 𝑥 ∈ 𝑣 ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) |
221 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝜑 ) |
222 |
1 32
|
islocfin |
⊢ ( 𝑉 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = ∪ 𝑉 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) ) |
223 |
6 222
|
sylib |
⊢ ( 𝜑 → ( 𝐽 ∈ Top ∧ 𝑋 = ∪ 𝑉 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) ) |
224 |
223
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) |
225 |
224
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) |
226 |
221 225
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) |
227 |
138 139 220 226
|
reximd2a |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) |
228 |
227
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) |
229 |
1 130
|
islocfin |
⊢ ( ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) ) |
230 |
134 136 228 229
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) ) |
231 |
|
funeq |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( Fun 𝑓 ↔ Fun ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ) |
232 |
|
dmeq |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → dom 𝑓 = dom ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
233 |
232
|
sseq1d |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( dom 𝑓 ⊆ 𝑈 ↔ dom ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝑈 ) ) |
234 |
|
rneq |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ran 𝑓 = ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
235 |
234
|
sseq1d |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( ran 𝑓 ⊆ 𝐽 ↔ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 ) ) |
236 |
231 233 235
|
3anbi123d |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( ( Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽 ) ↔ ( Fun ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ dom ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 ) ) ) |
237 |
234
|
breq1d |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( ran 𝑓 Ref 𝑈 ↔ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ) ) |
238 |
234
|
eleq1d |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ↔ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) ) ) |
239 |
237 238
|
anbi12d |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ↔ ( ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) ) ) ) |
240 |
236 239
|
anbi12d |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( ( ( Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) ↔ ( ( Fun ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ dom ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 ) ∧ ( ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) ) ) ) ) |
241 |
127 240
|
spcev |
⊢ ( ( ( Fun ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ dom ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 ) ∧ ( ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) ) ) → ∃ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) ) |
242 |
12 17 31 133 230 241
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∃ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) ) |
243 |
242
|
expl |
⊢ ( 𝜑 → ( ( 𝑔 : 𝑉 ⟶ 𝑈 ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∃ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ) |
244 |
243
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑔 ( 𝑔 : 𝑉 ⟶ 𝑈 ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∃ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ) |
245 |
10 244
|
mpd |
⊢ ( 𝜑 → ∃ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) ) |