| Step |
Hyp |
Ref |
Expression |
| 1 |
|
locfinref.x |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
locfinref.1 |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) |
| 3 |
|
locfinref.2 |
⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) |
| 4 |
|
locfinref.3 |
⊢ ( 𝜑 → 𝑉 ⊆ 𝐽 ) |
| 5 |
|
locfinref.4 |
⊢ ( 𝜑 → 𝑉 Ref 𝑈 ) |
| 6 |
|
locfinref.5 |
⊢ ( 𝜑 → 𝑉 ∈ ( LocFin ‘ 𝐽 ) ) |
| 7 |
|
reff |
⊢ ( 𝑉 ∈ ( LocFin ‘ 𝐽 ) → ( 𝑉 Ref 𝑈 ↔ ( ∪ 𝑈 ⊆ ∪ 𝑉 ∧ ∃ 𝑔 ( 𝑔 : 𝑉 ⟶ 𝑈 ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → ( 𝑉 Ref 𝑈 ↔ ( ∪ 𝑈 ⊆ ∪ 𝑉 ∧ ∃ 𝑔 ( 𝑔 : 𝑉 ⟶ 𝑈 ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) ) ) |
| 9 |
5 8
|
mpbid |
⊢ ( 𝜑 → ( ∪ 𝑈 ⊆ ∪ 𝑉 ∧ ∃ 𝑔 ( 𝑔 : 𝑉 ⟶ 𝑈 ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) ) |
| 10 |
9
|
simprd |
⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : 𝑉 ⟶ 𝑈 ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) |
| 11 |
|
funmpt |
⊢ Fun ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 12 |
11
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → Fun ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
| 13 |
|
eqid |
⊢ ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 14 |
13
|
dmmptss |
⊢ dom ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ ran 𝑔 |
| 15 |
|
frn |
⊢ ( 𝑔 : 𝑉 ⟶ 𝑈 → ran 𝑔 ⊆ 𝑈 ) |
| 16 |
15
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ran 𝑔 ⊆ 𝑈 ) |
| 17 |
14 16
|
sstrid |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → dom ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝑈 ) |
| 18 |
|
locfintop |
⊢ ( 𝑉 ∈ ( LocFin ‘ 𝐽 ) → 𝐽 ∈ Top ) |
| 19 |
6 18
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 20 |
19
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → 𝐽 ∈ Top ) |
| 21 |
|
cnvimass |
⊢ ( ◡ 𝑔 “ { 𝑢 } ) ⊆ dom 𝑔 |
| 22 |
|
fdm |
⊢ ( 𝑔 : 𝑉 ⟶ 𝑈 → dom 𝑔 = 𝑉 ) |
| 23 |
22
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → dom 𝑔 = 𝑉 ) |
| 24 |
21 23
|
sseqtrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → ( ◡ 𝑔 “ { 𝑢 } ) ⊆ 𝑉 ) |
| 25 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → 𝑉 ⊆ 𝐽 ) |
| 26 |
24 25
|
sstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → ( ◡ 𝑔 “ { 𝑢 } ) ⊆ 𝐽 ) |
| 27 |
|
uniopn |
⊢ ( ( 𝐽 ∈ Top ∧ ( ◡ 𝑔 “ { 𝑢 } ) ⊆ 𝐽 ) → ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∈ 𝐽 ) |
| 28 |
20 26 27
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) → ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∈ 𝐽 ) |
| 29 |
28
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∀ 𝑢 ∈ ran 𝑔 ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∈ 𝐽 ) |
| 30 |
13
|
rnmptss |
⊢ ( ∀ 𝑢 ∈ ran 𝑔 ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∈ 𝐽 → ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 ) |
| 31 |
29 30
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 ) |
| 32 |
|
eqid |
⊢ ∪ 𝑉 = ∪ 𝑉 |
| 33 |
|
eqid |
⊢ ∪ 𝑈 = ∪ 𝑈 |
| 34 |
32 33
|
refbas |
⊢ ( 𝑉 Ref 𝑈 → ∪ 𝑈 = ∪ 𝑉 ) |
| 35 |
5 34
|
syl |
⊢ ( 𝜑 → ∪ 𝑈 = ∪ 𝑉 ) |
| 36 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∪ 𝑈 = ∪ 𝑉 ) |
| 37 |
|
nfv |
⊢ Ⅎ 𝑣 ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) |
| 38 |
|
nfra1 |
⊢ Ⅎ 𝑣 ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) |
| 39 |
37 38
|
nfan |
⊢ Ⅎ 𝑣 ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) |
| 40 |
|
nfre1 |
⊢ Ⅎ 𝑣 ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 |
| 41 |
39 40
|
nfan |
⊢ Ⅎ 𝑣 ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ) |
| 42 |
|
ffn |
⊢ ( 𝑔 : 𝑉 ⟶ 𝑈 → 𝑔 Fn 𝑉 ) |
| 43 |
42
|
ad4antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑣 ) → 𝑔 Fn 𝑉 ) |
| 44 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑣 ) → 𝑣 ∈ 𝑉 ) |
| 45 |
|
fnfvelrn |
⊢ ( ( 𝑔 Fn 𝑉 ∧ 𝑣 ∈ 𝑉 ) → ( 𝑔 ‘ 𝑣 ) ∈ ran 𝑔 ) |
| 46 |
43 44 45
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑣 ) → ( 𝑔 ‘ 𝑣 ) ∈ ran 𝑔 ) |
| 47 |
|
ssid |
⊢ 𝑣 ⊆ 𝑣 |
| 48 |
42
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑔 Fn 𝑉 ) |
| 49 |
|
eqid |
⊢ ( 𝑔 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) |
| 50 |
|
fniniseg |
⊢ ( 𝑔 Fn 𝑉 → ( 𝑣 ∈ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ↔ ( 𝑣 ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) ) ) |
| 51 |
50
|
biimpar |
⊢ ( ( 𝑔 Fn 𝑉 ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) ) → 𝑣 ∈ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) |
| 52 |
49 51
|
mpanr2 |
⊢ ( ( 𝑔 Fn 𝑉 ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) |
| 53 |
48 52
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) |
| 54 |
|
ssuni |
⊢ ( ( 𝑣 ⊆ 𝑣 ∧ 𝑣 ∈ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) → 𝑣 ⊆ ∪ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) |
| 55 |
47 53 54
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ⊆ ∪ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) |
| 56 |
55
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑣 ) → 𝑥 ∈ ∪ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) |
| 57 |
|
sneq |
⊢ ( 𝑢 = ( 𝑔 ‘ 𝑣 ) → { 𝑢 } = { ( 𝑔 ‘ 𝑣 ) } ) |
| 58 |
57
|
imaeq2d |
⊢ ( 𝑢 = ( 𝑔 ‘ 𝑣 ) → ( ◡ 𝑔 “ { 𝑢 } ) = ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) |
| 59 |
58
|
unieqd |
⊢ ( 𝑢 = ( 𝑔 ‘ 𝑣 ) → ∪ ( ◡ 𝑔 “ { 𝑢 } ) = ∪ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) |
| 60 |
59
|
eleq2d |
⊢ ( 𝑢 = ( 𝑔 ‘ 𝑣 ) → ( 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ↔ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) ) |
| 61 |
60
|
rspcev |
⊢ ( ( ( 𝑔 ‘ 𝑣 ) ∈ ran 𝑔 ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { ( 𝑔 ‘ 𝑣 ) } ) ) → ∃ 𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 62 |
46 56 61
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑣 ) → ∃ 𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 63 |
62
|
adantllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑣 ) → ∃ 𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 64 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ) → ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ) |
| 65 |
41 63 64
|
r19.29af |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ) → ∃ 𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 66 |
|
nfv |
⊢ Ⅎ 𝑣 𝑢 ∈ ran 𝑔 |
| 67 |
39 66
|
nfan |
⊢ Ⅎ 𝑣 ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) |
| 68 |
|
nfv |
⊢ Ⅎ 𝑣 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) |
| 69 |
67 68
|
nfan |
⊢ Ⅎ 𝑣 ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 70 |
24
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑥 ∈ 𝑣 ) → ( ◡ 𝑔 “ { 𝑢 } ) ⊆ 𝑉 ) |
| 71 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑥 ∈ 𝑣 ) → 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 72 |
70 71
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑥 ∈ 𝑣 ) → 𝑣 ∈ 𝑉 ) |
| 73 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑥 ∈ 𝑣 ) → 𝑥 ∈ 𝑣 ) |
| 74 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 75 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ↔ ∃ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) 𝑥 ∈ 𝑣 ) |
| 76 |
74 75
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ∃ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) 𝑥 ∈ 𝑣 ) |
| 77 |
69 72 73 76
|
reximd2a |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ) |
| 78 |
77
|
r19.29an |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ ∃ 𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ) |
| 79 |
65 78
|
impbida |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ( ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ↔ ∃ 𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
| 80 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝑉 ↔ ∃ 𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ) |
| 81 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑢 ∈ ran 𝑔 ∪ ( ◡ 𝑔 “ { 𝑢 } ) ↔ ∃ 𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 82 |
79 80 81
|
3bitr4g |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ( 𝑥 ∈ ∪ 𝑉 ↔ 𝑥 ∈ ∪ 𝑢 ∈ ran 𝑔 ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
| 83 |
82
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∪ 𝑉 = ∪ 𝑢 ∈ ran 𝑔 ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 84 |
|
dfiun3g |
⊢ ( ∀ 𝑢 ∈ ran 𝑔 ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∈ 𝐽 → ∪ 𝑢 ∈ ran 𝑔 ∪ ( ◡ 𝑔 “ { 𝑢 } ) = ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
| 85 |
29 84
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∪ 𝑢 ∈ ran 𝑔 ∪ ( ◡ 𝑔 “ { 𝑢 } ) = ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
| 86 |
36 83 85
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∪ 𝑈 = ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
| 87 |
15
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) → ran 𝑔 ⊆ 𝑈 ) |
| 88 |
|
vex |
⊢ 𝑤 ∈ V |
| 89 |
13
|
elrnmpt |
⊢ ( 𝑤 ∈ V → ( 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ↔ ∃ 𝑢 ∈ ran 𝑔 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
| 90 |
88 89
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ( 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ↔ ∃ 𝑢 ∈ ran 𝑔 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
| 91 |
90
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) → ∃ 𝑢 ∈ ran 𝑔 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 92 |
|
ssrexv |
⊢ ( ran 𝑔 ⊆ 𝑈 → ( ∃ 𝑢 ∈ ran 𝑔 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) → ∃ 𝑢 ∈ 𝑈 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
| 93 |
87 91 92
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) → ∃ 𝑢 ∈ 𝑈 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 94 |
|
nfv |
⊢ Ⅎ 𝑢 ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) |
| 95 |
|
nfmpt1 |
⊢ Ⅎ 𝑢 ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 96 |
95
|
nfrn |
⊢ Ⅎ 𝑢 ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 97 |
96
|
nfcri |
⊢ Ⅎ 𝑢 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 98 |
94 97
|
nfan |
⊢ Ⅎ 𝑢 ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
| 99 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 100 |
|
nfv |
⊢ Ⅎ 𝑣 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 101 |
39 100
|
nfan |
⊢ Ⅎ 𝑣 ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
| 102 |
|
nfv |
⊢ Ⅎ 𝑣 𝑢 ∈ 𝑈 |
| 103 |
101 102
|
nfan |
⊢ Ⅎ 𝑣 ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) |
| 104 |
|
nfv |
⊢ Ⅎ 𝑣 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) |
| 105 |
103 104
|
nfan |
⊢ Ⅎ 𝑣 ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 106 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) → ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) |
| 107 |
42
|
ad5antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → 𝑔 Fn 𝑉 ) |
| 108 |
|
fniniseg |
⊢ ( 𝑔 Fn 𝑉 → ( 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ↔ ( 𝑣 ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑣 ) = 𝑢 ) ) ) |
| 109 |
107 108
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ↔ ( 𝑣 ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑣 ) = 𝑢 ) ) ) |
| 110 |
109
|
biimpa |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( 𝑣 ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑣 ) = 𝑢 ) ) |
| 111 |
110
|
simpld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) → 𝑣 ∈ 𝑉 ) |
| 112 |
|
rspa |
⊢ ( ( ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) |
| 113 |
106 111 112
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) → 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) |
| 114 |
110
|
simprd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( 𝑔 ‘ 𝑣 ) = 𝑢 ) |
| 115 |
113 114
|
sseqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) → 𝑣 ⊆ 𝑢 ) |
| 116 |
115
|
ex |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) → 𝑣 ⊆ 𝑢 ) ) |
| 117 |
105 116
|
ralrimi |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ∀ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) 𝑣 ⊆ 𝑢 ) |
| 118 |
|
unissb |
⊢ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ⊆ 𝑢 ↔ ∀ 𝑣 ∈ ( ◡ 𝑔 “ { 𝑢 } ) 𝑣 ⊆ 𝑢 ) |
| 119 |
117 118
|
sylibr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ∪ ( ◡ 𝑔 “ { 𝑢 } ) ⊆ 𝑢 ) |
| 120 |
99 119
|
eqsstrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → 𝑤 ⊆ 𝑢 ) |
| 121 |
120
|
exp31 |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) → ( 𝑢 ∈ 𝑈 → ( 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) → 𝑤 ⊆ 𝑢 ) ) ) |
| 122 |
98 121
|
reximdai |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) → ( ∃ 𝑢 ∈ 𝑈 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑢 } ) → ∃ 𝑢 ∈ 𝑈 𝑤 ⊆ 𝑢 ) ) |
| 123 |
93 122
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) → ∃ 𝑢 ∈ 𝑈 𝑤 ⊆ 𝑢 ) |
| 124 |
123
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∀ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∃ 𝑢 ∈ 𝑈 𝑤 ⊆ 𝑢 ) |
| 125 |
|
vex |
⊢ 𝑔 ∈ V |
| 126 |
125
|
rnex |
⊢ ran 𝑔 ∈ V |
| 127 |
126
|
mptex |
⊢ ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ V |
| 128 |
|
rnexg |
⊢ ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ V → ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ V ) |
| 129 |
127 128
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ V ) |
| 130 |
|
eqid |
⊢ ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) = ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 131 |
130 33
|
isref |
⊢ ( ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ V → ( ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ↔ ( ∪ 𝑈 = ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ∀ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∃ 𝑢 ∈ 𝑈 𝑤 ⊆ 𝑢 ) ) ) |
| 132 |
129 131
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ( ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ↔ ( ∪ 𝑈 = ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ∀ 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∃ 𝑢 ∈ 𝑈 𝑤 ⊆ 𝑢 ) ) ) |
| 133 |
86 124 132
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ) |
| 134 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → 𝐽 ∈ Top ) |
| 135 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → 𝑋 = ∪ 𝑈 ) |
| 136 |
135 86
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → 𝑋 = ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
| 137 |
|
nfv |
⊢ Ⅎ 𝑣 𝑥 ∈ 𝑋 |
| 138 |
39 137
|
nfan |
⊢ Ⅎ 𝑣 ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) |
| 139 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ ( 𝑥 ∈ 𝑣 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) → 𝑣 ∈ 𝐽 ) |
| 140 |
|
ffun |
⊢ ( 𝑔 : 𝑉 ⟶ 𝑈 → Fun 𝑔 ) |
| 141 |
140
|
ad6antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → Fun 𝑔 ) |
| 142 |
|
imafi |
⊢ ( ( Fun 𝑔 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → ( 𝑔 “ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) ∈ Fin ) |
| 143 |
141 142
|
sylancom |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → ( 𝑔 “ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) ∈ Fin ) |
| 144 |
|
simp3 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑘 ∈ ran 𝑔 ∧ 𝑤 = ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) ) → 𝑤 = ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) ) |
| 145 |
|
sneq |
⊢ ( 𝑢 = 𝑘 → { 𝑢 } = { 𝑘 } ) |
| 146 |
145
|
imaeq2d |
⊢ ( 𝑢 = 𝑘 → ( ◡ 𝑔 “ { 𝑢 } ) = ( ◡ 𝑔 “ { 𝑘 } ) ) |
| 147 |
146
|
unieqd |
⊢ ( 𝑢 = 𝑘 → ∪ ( ◡ 𝑔 “ { 𝑢 } ) = ∪ ( ◡ 𝑔 “ { 𝑘 } ) ) |
| 148 |
125
|
cnvex |
⊢ ◡ 𝑔 ∈ V |
| 149 |
|
imaexg |
⊢ ( ◡ 𝑔 ∈ V → ( ◡ 𝑔 “ { 𝑘 } ) ∈ V ) |
| 150 |
148 149
|
ax-mp |
⊢ ( ◡ 𝑔 “ { 𝑘 } ) ∈ V |
| 151 |
150
|
uniex |
⊢ ∪ ( ◡ 𝑔 “ { 𝑘 } ) ∈ V |
| 152 |
147 13 151
|
fvmpt |
⊢ ( 𝑘 ∈ ran 𝑔 → ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) = ∪ ( ◡ 𝑔 “ { 𝑘 } ) ) |
| 153 |
152
|
3ad2ant2 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑘 ∈ ran 𝑔 ∧ 𝑤 = ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) ) → ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) = ∪ ( ◡ 𝑔 “ { 𝑘 } ) ) |
| 154 |
144 153
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑘 ∈ ran 𝑔 ∧ 𝑤 = ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) ) → 𝑤 = ∪ ( ◡ 𝑔 “ { 𝑘 } ) ) |
| 155 |
154
|
ineq1d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑘 ∈ ran 𝑔 ∧ 𝑤 = ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) ) → ( 𝑤 ∩ 𝑣 ) = ( ∪ ( ◡ 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) ) |
| 156 |
155
|
neeq1d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑘 ∈ ran 𝑔 ∧ 𝑤 = ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ‘ 𝑘 ) ) → ( ( 𝑤 ∩ 𝑣 ) ≠ ∅ ↔ ( ∪ ( ◡ 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) ≠ ∅ ) ) |
| 157 |
126
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → ran 𝑔 ∈ V ) |
| 158 |
|
imaexg |
⊢ ( ◡ 𝑔 ∈ V → ( ◡ 𝑔 “ { 𝑢 } ) ∈ V ) |
| 159 |
148 158
|
ax-mp |
⊢ ( ◡ 𝑔 “ { 𝑢 } ) ∈ V |
| 160 |
159
|
uniex |
⊢ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∈ V |
| 161 |
160 13
|
fnmpti |
⊢ ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Fn ran 𝑔 |
| 162 |
|
dffn4 |
⊢ ( ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Fn ran 𝑔 ↔ ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) : ran 𝑔 –onto→ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
| 163 |
161 162
|
mpbi |
⊢ ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) : ran 𝑔 –onto→ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 164 |
163
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) : ran 𝑔 –onto→ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
| 165 |
156 157 164
|
rabfodom |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑘 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) ≠ ∅ } ) |
| 166 |
|
sneq |
⊢ ( 𝑘 = 𝑢 → { 𝑘 } = { 𝑢 } ) |
| 167 |
166
|
imaeq2d |
⊢ ( 𝑘 = 𝑢 → ( ◡ 𝑔 “ { 𝑘 } ) = ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 168 |
167
|
unieqd |
⊢ ( 𝑘 = 𝑢 → ∪ ( ◡ 𝑔 “ { 𝑘 } ) = ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 169 |
168
|
ineq1d |
⊢ ( 𝑘 = 𝑢 → ( ∪ ( ◡ 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) = ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ) |
| 170 |
169
|
neeq1d |
⊢ ( 𝑘 = 𝑢 → ( ( ∪ ( ◡ 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) ≠ ∅ ↔ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ) |
| 171 |
170
|
cbvrabv |
⊢ { 𝑘 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑘 } ) ∩ 𝑣 ) ≠ ∅ } = { 𝑢 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } |
| 172 |
165 171
|
breqtrdi |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ) |
| 173 |
126
|
rabex |
⊢ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ∈ V |
| 174 |
|
nfv |
⊢ Ⅎ 𝑗 ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) |
| 175 |
|
nfrab1 |
⊢ Ⅎ 𝑗 { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } |
| 176 |
175
|
nfel1 |
⊢ Ⅎ 𝑗 { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin |
| 177 |
174 176
|
nfan |
⊢ Ⅎ 𝑗 ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) |
| 178 |
|
nfv |
⊢ Ⅎ 𝑗 𝑢 ∈ ran 𝑔 |
| 179 |
177 178
|
nfan |
⊢ Ⅎ 𝑗 ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) |
| 180 |
|
nfv |
⊢ Ⅎ 𝑗 ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ |
| 181 |
179 180
|
nfan |
⊢ Ⅎ 𝑗 ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) |
| 182 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝑔 ‘ 𝑘 ) = 𝑢 |
| 183 |
175 182
|
nfrexw |
⊢ Ⅎ 𝑗 ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 |
| 184 |
42
|
ad5antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → 𝑔 Fn 𝑉 ) |
| 185 |
184
|
ad5antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) → 𝑔 Fn 𝑉 ) |
| 186 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) → 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) |
| 187 |
|
fniniseg |
⊢ ( 𝑔 Fn 𝑉 → ( 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ↔ ( 𝑗 ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑗 ) = 𝑢 ) ) ) |
| 188 |
187
|
biimpa |
⊢ ( ( 𝑔 Fn 𝑉 ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( 𝑗 ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑗 ) = 𝑢 ) ) |
| 189 |
185 186 188
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) → ( 𝑗 ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑗 ) = 𝑢 ) ) |
| 190 |
189
|
simpld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) → 𝑗 ∈ 𝑉 ) |
| 191 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) → ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) |
| 192 |
|
rabid |
⊢ ( 𝑗 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ↔ ( 𝑗 ∈ 𝑉 ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) ) |
| 193 |
190 191 192
|
sylanbrc |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) → 𝑗 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) |
| 194 |
189
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) → ( 𝑔 ‘ 𝑗 ) = 𝑢 ) |
| 195 |
|
fveqeq2 |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑔 ‘ 𝑘 ) = 𝑢 ↔ ( 𝑔 ‘ 𝑗 ) = 𝑢 ) ) |
| 196 |
195
|
rspcev |
⊢ ( ( 𝑗 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∧ ( 𝑔 ‘ 𝑗 ) = 𝑢 ) → ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 ) |
| 197 |
193 194 196
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) ∧ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) → ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 ) |
| 198 |
|
uniinn0 |
⊢ ( ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ↔ ∃ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) |
| 199 |
198
|
biimpi |
⊢ ( ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ → ∃ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) |
| 200 |
199
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) → ∃ 𝑗 ∈ ( ◡ 𝑔 “ { 𝑢 } ) ( 𝑗 ∩ 𝑣 ) ≠ ∅ ) |
| 201 |
181 183 197 200
|
r19.29af2 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) ∧ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ ) → ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 ) |
| 202 |
201
|
ex |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ∧ 𝑢 ∈ ran 𝑔 ) → ( ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ → ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 ) ) |
| 203 |
202
|
ss2rabdv |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑢 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ⊆ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) |
| 204 |
|
ssdomg |
⊢ ( { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ∈ V → ( { 𝑢 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ⊆ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } → { 𝑢 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) ) |
| 205 |
173 203 204
|
mpsyl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑢 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) |
| 206 |
|
domtr |
⊢ ( ( { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ∧ { 𝑢 ∈ ran 𝑔 ∣ ( ∪ ( ◡ 𝑔 “ { 𝑢 } ) ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) |
| 207 |
172 205 206
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ≼ { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) |
| 208 |
184
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → 𝑔 Fn 𝑉 ) |
| 209 |
|
dffn3 |
⊢ ( 𝑔 Fn 𝑉 ↔ 𝑔 : 𝑉 ⟶ ran 𝑔 ) |
| 210 |
209
|
biimpi |
⊢ ( 𝑔 Fn 𝑉 → 𝑔 : 𝑉 ⟶ ran 𝑔 ) |
| 211 |
|
ssrab2 |
⊢ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ⊆ 𝑉 |
| 212 |
|
fimarab |
⊢ ( ( 𝑔 : 𝑉 ⟶ ran 𝑔 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ⊆ 𝑉 ) → ( 𝑔 “ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) = { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) |
| 213 |
211 212
|
mpan2 |
⊢ ( 𝑔 : 𝑉 ⟶ ran 𝑔 → ( 𝑔 “ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) = { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) |
| 214 |
208 210 213
|
3syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → ( 𝑔 “ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) = { 𝑢 ∈ ran 𝑔 ∣ ∃ 𝑘 ∈ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ( 𝑔 ‘ 𝑘 ) = 𝑢 } ) |
| 215 |
207 214
|
breqtrrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ≼ ( 𝑔 “ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) ) |
| 216 |
|
domfi |
⊢ ( ( ( 𝑔 “ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) ∈ Fin ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ≼ ( 𝑔 “ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ) ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) |
| 217 |
143 215 216
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) |
| 218 |
217
|
ex |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → ( { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin → { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) |
| 219 |
218
|
imdistanda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑣 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) → ( 𝑥 ∈ 𝑣 ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) ) |
| 220 |
219
|
imp |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) ∧ ( 𝑥 ∈ 𝑣 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) → ( 𝑥 ∈ 𝑣 ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) |
| 221 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝜑 ) |
| 222 |
1 32
|
islocfin |
⊢ ( 𝑉 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = ∪ 𝑉 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) ) |
| 223 |
6 222
|
sylib |
⊢ ( 𝜑 → ( 𝐽 ∈ Top ∧ 𝑋 = ∪ 𝑉 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) ) |
| 224 |
223
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) |
| 225 |
224
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) |
| 226 |
221 225
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ { 𝑗 ∈ 𝑉 ∣ ( 𝑗 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) |
| 227 |
138 139 220 226
|
reximd2a |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) |
| 228 |
227
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) |
| 229 |
1 130
|
islocfin |
⊢ ( ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = ∪ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ { 𝑤 ∈ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∣ ( 𝑤 ∩ 𝑣 ) ≠ ∅ } ∈ Fin ) ) ) |
| 230 |
134 136 228 229
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) ) |
| 231 |
|
funeq |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( Fun 𝑓 ↔ Fun ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) ) |
| 232 |
|
dmeq |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → dom 𝑓 = dom ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
| 233 |
232
|
sseq1d |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( dom 𝑓 ⊆ 𝑈 ↔ dom ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝑈 ) ) |
| 234 |
|
rneq |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ran 𝑓 = ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ) |
| 235 |
234
|
sseq1d |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( ran 𝑓 ⊆ 𝐽 ↔ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 ) ) |
| 236 |
231 233 235
|
3anbi123d |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( ( Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽 ) ↔ ( Fun ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ dom ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 ) ) ) |
| 237 |
234
|
breq1d |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( ran 𝑓 Ref 𝑈 ↔ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ) ) |
| 238 |
234
|
eleq1d |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ↔ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) ) ) |
| 239 |
237 238
|
anbi12d |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ↔ ( ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) ) ) ) |
| 240 |
236 239
|
anbi12d |
⊢ ( 𝑓 = ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) → ( ( ( Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) ↔ ( ( Fun ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ dom ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 ) ∧ ( ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) ) ) ) ) |
| 241 |
127 240
|
spcev |
⊢ ( ( ( Fun ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∧ dom ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ⊆ 𝐽 ) ∧ ( ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) Ref 𝑈 ∧ ran ( 𝑢 ∈ ran 𝑔 ↦ ∪ ( ◡ 𝑔 “ { 𝑢 } ) ) ∈ ( LocFin ‘ 𝐽 ) ) ) → ∃ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) ) |
| 242 |
12 17 31 133 230 241
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑉 ⟶ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∃ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) ) |
| 243 |
242
|
expl |
⊢ ( 𝜑 → ( ( 𝑔 : 𝑉 ⟶ 𝑈 ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∃ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ) |
| 244 |
243
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑔 ( 𝑔 : 𝑉 ⟶ 𝑈 ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ⊆ ( 𝑔 ‘ 𝑣 ) ) → ∃ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) ) ) |
| 245 |
10 244
|
mpd |
⊢ ( 𝜑 → ∃ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽 ) ∧ ( ran 𝑓 Ref 𝑈 ∧ ran 𝑓 ∈ ( LocFin ‘ 𝐽 ) ) ) ) |