Step |
Hyp |
Ref |
Expression |
1 |
|
ssid |
⊢ ∪ 𝐵 ⊆ ∪ 𝐵 |
2 |
|
eqid |
⊢ ∪ 𝐴 = ∪ 𝐴 |
3 |
|
eqid |
⊢ ∪ 𝐵 = ∪ 𝐵 |
4 |
2 3
|
isref |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 Ref 𝐵 ↔ ( ∪ 𝐵 = ∪ 𝐴 ∧ ∀ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑣 ⊆ 𝑢 ) ) ) |
5 |
4
|
simprbda |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 Ref 𝐵 ) → ∪ 𝐵 = ∪ 𝐴 ) |
6 |
1 5
|
sseqtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 Ref 𝐵 ) → ∪ 𝐵 ⊆ ∪ 𝐴 ) |
7 |
4
|
simplbda |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 Ref 𝐵 ) → ∀ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑣 ⊆ 𝑢 ) |
8 |
|
sseq2 |
⊢ ( 𝑢 = ( 𝑓 ‘ 𝑣 ) → ( 𝑣 ⊆ 𝑢 ↔ 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) |
9 |
8
|
ac6sg |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑣 ⊆ 𝑢 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 Ref 𝐵 ) → ( ∀ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑣 ⊆ 𝑢 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ) |
11 |
7 10
|
mpd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 Ref 𝐵 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) |
12 |
6 11
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 Ref 𝐵 ) → ( ∪ 𝐵 ⊆ ∪ 𝐴 ∧ ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ) |
13 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) → ∪ 𝐵 ⊆ ∪ 𝐴 ) |
14 |
|
nfv |
⊢ Ⅎ 𝑣 ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) |
15 |
|
nfv |
⊢ Ⅎ 𝑣 𝑓 : 𝐴 ⟶ 𝐵 |
16 |
|
nfra1 |
⊢ Ⅎ 𝑣 ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) |
17 |
15 16
|
nfan |
⊢ Ⅎ 𝑣 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) |
18 |
14 17
|
nfan |
⊢ Ⅎ 𝑣 ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) |
19 |
|
nfv |
⊢ Ⅎ 𝑣 𝑥 ∈ ∪ 𝐴 |
20 |
18 19
|
nfan |
⊢ Ⅎ 𝑣 ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑥 ∈ ∪ 𝐴 ) |
21 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑣 ∈ 𝐴 ) → 𝑓 : 𝐴 ⟶ 𝐵 ) |
22 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑣 ∈ 𝐴 ) → 𝑣 ∈ 𝐴 ) |
23 |
21 22
|
ffvelrnd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑣 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑣 ) ∈ 𝐵 ) |
24 |
23
|
adantlr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑥 ∈ ∪ 𝐴 ) ∧ 𝑣 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑣 ) ∈ 𝐵 ) |
25 |
24
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑥 ∈ ∪ 𝐴 ) ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑣 ) → ( 𝑓 ‘ 𝑣 ) ∈ 𝐵 ) |
26 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑣 ∈ 𝐴 ) → ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) |
27 |
26
|
adantlr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑥 ∈ ∪ 𝐴 ) ∧ 𝑣 ∈ 𝐴 ) → ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) |
28 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑥 ∈ ∪ 𝐴 ) ∧ 𝑣 ∈ 𝐴 ) → 𝑣 ∈ 𝐴 ) |
29 |
|
rspa |
⊢ ( ( ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ∧ 𝑣 ∈ 𝐴 ) → 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) |
30 |
27 28 29
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑥 ∈ ∪ 𝐴 ) ∧ 𝑣 ∈ 𝐴 ) → 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) |
31 |
30
|
sselda |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑥 ∈ ∪ 𝐴 ) ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑣 ) → 𝑥 ∈ ( 𝑓 ‘ 𝑣 ) ) |
32 |
|
eleq2 |
⊢ ( 𝑢 = ( 𝑓 ‘ 𝑣 ) → ( 𝑥 ∈ 𝑢 ↔ 𝑥 ∈ ( 𝑓 ‘ 𝑣 ) ) ) |
33 |
32
|
rspcev |
⊢ ( ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐵 ∧ 𝑥 ∈ ( 𝑓 ‘ 𝑣 ) ) → ∃ 𝑢 ∈ 𝐵 𝑥 ∈ 𝑢 ) |
34 |
25 31 33
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑥 ∈ ∪ 𝐴 ) ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑣 ) → ∃ 𝑢 ∈ 𝐵 𝑥 ∈ 𝑢 ) |
35 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑥 ∈ ∪ 𝐴 ) → 𝑥 ∈ ∪ 𝐴 ) |
36 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑣 ∈ 𝐴 𝑥 ∈ 𝑣 ) |
37 |
35 36
|
sylib |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑥 ∈ ∪ 𝐴 ) → ∃ 𝑣 ∈ 𝐴 𝑥 ∈ 𝑣 ) |
38 |
20 34 37
|
r19.29af |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑥 ∈ ∪ 𝐴 ) → ∃ 𝑢 ∈ 𝐵 𝑥 ∈ 𝑢 ) |
39 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝐵 ↔ ∃ 𝑢 ∈ 𝐵 𝑥 ∈ 𝑢 ) |
40 |
38 39
|
sylibr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑥 ∈ ∪ 𝐴 ) → 𝑥 ∈ ∪ 𝐵 ) |
41 |
13 40
|
eqelssd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) → ∪ 𝐵 = ∪ 𝐴 ) |
42 |
26 22 29
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑣 ∈ 𝐴 ) → 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) |
43 |
8
|
rspcev |
⊢ ( ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐵 ∧ 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) → ∃ 𝑢 ∈ 𝐵 𝑣 ⊆ 𝑢 ) |
44 |
23 42 43
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ∧ 𝑣 ∈ 𝐴 ) → ∃ 𝑢 ∈ 𝐵 𝑣 ⊆ 𝑢 ) |
45 |
44
|
ex |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) → ( 𝑣 ∈ 𝐴 → ∃ 𝑢 ∈ 𝐵 𝑣 ⊆ 𝑢 ) ) |
46 |
18 45
|
ralrimi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) → ∀ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑣 ⊆ 𝑢 ) |
47 |
4
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) → ( 𝐴 Ref 𝐵 ↔ ( ∪ 𝐵 = ∪ 𝐴 ∧ ∀ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑣 ⊆ 𝑢 ) ) ) |
48 |
41 46 47
|
mpbir2and |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) → 𝐴 Ref 𝐵 ) |
49 |
48
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) → ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) → 𝐴 Ref 𝐵 ) ) |
50 |
49
|
exlimdv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝐵 ⊆ ∪ 𝐴 ) → ( ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) → 𝐴 Ref 𝐵 ) ) |
51 |
50
|
impr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ∪ 𝐵 ⊆ ∪ 𝐴 ∧ ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ) → 𝐴 Ref 𝐵 ) |
52 |
12 51
|
impbida |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 Ref 𝐵 ↔ ( ∪ 𝐵 ⊆ ∪ 𝐴 ∧ ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 𝑣 ⊆ ( 𝑓 ‘ 𝑣 ) ) ) ) ) |