Metamath Proof Explorer


Theorem reff

Description: For any cover refinement, there exists a function associating with each set in the refinement a set in the original cover containing it. This is sometimes used as a definition of refinement. Note that this definition uses the axiom of choice through ac6sg . (Contributed by Thierry Arnoux, 12-Jan-2020)

Ref Expression
Assertion reff ( 𝐴𝑉 → ( 𝐴 Ref 𝐵 ↔ ( 𝐵 𝐴 ∧ ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 ssid 𝐵 𝐵
2 eqid 𝐴 = 𝐴
3 eqid 𝐵 = 𝐵
4 2 3 isref ( 𝐴𝑉 → ( 𝐴 Ref 𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀ 𝑣𝐴𝑢𝐵 𝑣𝑢 ) ) )
5 4 simprbda ( ( 𝐴𝑉𝐴 Ref 𝐵 ) → 𝐵 = 𝐴 )
6 1 5 sseqtrid ( ( 𝐴𝑉𝐴 Ref 𝐵 ) → 𝐵 𝐴 )
7 4 simplbda ( ( 𝐴𝑉𝐴 Ref 𝐵 ) → ∀ 𝑣𝐴𝑢𝐵 𝑣𝑢 )
8 sseq2 ( 𝑢 = ( 𝑓𝑣 ) → ( 𝑣𝑢𝑣 ⊆ ( 𝑓𝑣 ) ) )
9 8 ac6sg ( 𝐴𝑉 → ( ∀ 𝑣𝐴𝑢𝐵 𝑣𝑢 → ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) )
10 9 adantr ( ( 𝐴𝑉𝐴 Ref 𝐵 ) → ( ∀ 𝑣𝐴𝑢𝐵 𝑣𝑢 → ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) )
11 7 10 mpd ( ( 𝐴𝑉𝐴 Ref 𝐵 ) → ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) )
12 6 11 jca ( ( 𝐴𝑉𝐴 Ref 𝐵 ) → ( 𝐵 𝐴 ∧ ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) )
13 simplr ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) → 𝐵 𝐴 )
14 nfv 𝑣 ( 𝐴𝑉 𝐵 𝐴 )
15 nfv 𝑣 𝑓 : 𝐴𝐵
16 nfra1 𝑣𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 )
17 15 16 nfan 𝑣 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) )
18 14 17 nfan 𝑣 ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) )
19 nfv 𝑣 𝑥 𝐴
20 18 19 nfan 𝑣 ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑥 𝐴 )
21 simplrl ( ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑣𝐴 ) → 𝑓 : 𝐴𝐵 )
22 simpr ( ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑣𝐴 ) → 𝑣𝐴 )
23 21 22 ffvelrnd ( ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑣𝐴 ) → ( 𝑓𝑣 ) ∈ 𝐵 )
24 23 adantlr ( ( ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑥 𝐴 ) ∧ 𝑣𝐴 ) → ( 𝑓𝑣 ) ∈ 𝐵 )
25 24 adantr ( ( ( ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑥 𝐴 ) ∧ 𝑣𝐴 ) ∧ 𝑥𝑣 ) → ( 𝑓𝑣 ) ∈ 𝐵 )
26 simplrr ( ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑣𝐴 ) → ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) )
27 26 adantlr ( ( ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑥 𝐴 ) ∧ 𝑣𝐴 ) → ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) )
28 simpr ( ( ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑥 𝐴 ) ∧ 𝑣𝐴 ) → 𝑣𝐴 )
29 rspa ( ( ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ∧ 𝑣𝐴 ) → 𝑣 ⊆ ( 𝑓𝑣 ) )
30 27 28 29 syl2anc ( ( ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑥 𝐴 ) ∧ 𝑣𝐴 ) → 𝑣 ⊆ ( 𝑓𝑣 ) )
31 30 sselda ( ( ( ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑥 𝐴 ) ∧ 𝑣𝐴 ) ∧ 𝑥𝑣 ) → 𝑥 ∈ ( 𝑓𝑣 ) )
32 eleq2 ( 𝑢 = ( 𝑓𝑣 ) → ( 𝑥𝑢𝑥 ∈ ( 𝑓𝑣 ) ) )
33 32 rspcev ( ( ( 𝑓𝑣 ) ∈ 𝐵𝑥 ∈ ( 𝑓𝑣 ) ) → ∃ 𝑢𝐵 𝑥𝑢 )
34 25 31 33 syl2anc ( ( ( ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑥 𝐴 ) ∧ 𝑣𝐴 ) ∧ 𝑥𝑣 ) → ∃ 𝑢𝐵 𝑥𝑢 )
35 simpr ( ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑥 𝐴 ) → 𝑥 𝐴 )
36 eluni2 ( 𝑥 𝐴 ↔ ∃ 𝑣𝐴 𝑥𝑣 )
37 35 36 sylib ( ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑥 𝐴 ) → ∃ 𝑣𝐴 𝑥𝑣 )
38 20 34 37 r19.29af ( ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑥 𝐴 ) → ∃ 𝑢𝐵 𝑥𝑢 )
39 eluni2 ( 𝑥 𝐵 ↔ ∃ 𝑢𝐵 𝑥𝑢 )
40 38 39 sylibr ( ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑥 𝐴 ) → 𝑥 𝐵 )
41 13 40 eqelssd ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) → 𝐵 = 𝐴 )
42 26 22 29 syl2anc ( ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑣𝐴 ) → 𝑣 ⊆ ( 𝑓𝑣 ) )
43 8 rspcev ( ( ( 𝑓𝑣 ) ∈ 𝐵𝑣 ⊆ ( 𝑓𝑣 ) ) → ∃ 𝑢𝐵 𝑣𝑢 )
44 23 42 43 syl2anc ( ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ∧ 𝑣𝐴 ) → ∃ 𝑢𝐵 𝑣𝑢 )
45 44 ex ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) → ( 𝑣𝐴 → ∃ 𝑢𝐵 𝑣𝑢 ) )
46 18 45 ralrimi ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) → ∀ 𝑣𝐴𝑢𝐵 𝑣𝑢 )
47 4 ad2antrr ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) → ( 𝐴 Ref 𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀ 𝑣𝐴𝑢𝐵 𝑣𝑢 ) ) )
48 41 46 47 mpbir2and ( ( ( 𝐴𝑉 𝐵 𝐴 ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) → 𝐴 Ref 𝐵 )
49 48 ex ( ( 𝐴𝑉 𝐵 𝐴 ) → ( ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) → 𝐴 Ref 𝐵 ) )
50 49 exlimdv ( ( 𝐴𝑉 𝐵 𝐴 ) → ( ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) → 𝐴 Ref 𝐵 ) )
51 50 impr ( ( 𝐴𝑉 ∧ ( 𝐵 𝐴 ∧ ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ) → 𝐴 Ref 𝐵 )
52 12 51 impbida ( 𝐴𝑉 → ( 𝐴 Ref 𝐵 ↔ ( 𝐵 𝐴 ∧ ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑣𝐴 𝑣 ⊆ ( 𝑓𝑣 ) ) ) ) )