| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssid |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
2 3
|
isref |
|
| 5 |
4
|
simprbda |
|
| 6 |
1 5
|
sseqtrid |
|
| 7 |
4
|
simplbda |
|
| 8 |
|
sseq2 |
|
| 9 |
8
|
ac6sg |
|
| 10 |
9
|
adantr |
|
| 11 |
7 10
|
mpd |
|
| 12 |
6 11
|
jca |
|
| 13 |
|
simplr |
|
| 14 |
|
nfv |
|
| 15 |
|
nfv |
|
| 16 |
|
nfra1 |
|
| 17 |
15 16
|
nfan |
|
| 18 |
14 17
|
nfan |
|
| 19 |
|
nfv |
|
| 20 |
18 19
|
nfan |
|
| 21 |
|
simplrl |
|
| 22 |
|
simpr |
|
| 23 |
21 22
|
ffvelcdmd |
|
| 24 |
23
|
adantlr |
|
| 25 |
24
|
adantr |
|
| 26 |
|
simplrr |
|
| 27 |
26
|
adantlr |
|
| 28 |
|
simpr |
|
| 29 |
|
rspa |
|
| 30 |
27 28 29
|
syl2anc |
|
| 31 |
30
|
sselda |
|
| 32 |
|
eleq2 |
|
| 33 |
32
|
rspcev |
|
| 34 |
25 31 33
|
syl2anc |
|
| 35 |
|
simpr |
|
| 36 |
|
eluni2 |
|
| 37 |
35 36
|
sylib |
|
| 38 |
20 34 37
|
r19.29af |
|
| 39 |
|
eluni2 |
|
| 40 |
38 39
|
sylibr |
|
| 41 |
13 40
|
eqelssd |
|
| 42 |
26 22 29
|
syl2anc |
|
| 43 |
8
|
rspcev |
|
| 44 |
23 42 43
|
syl2anc |
|
| 45 |
44
|
ex |
|
| 46 |
18 45
|
ralrimi |
|
| 47 |
4
|
ad2antrr |
|
| 48 |
41 46 47
|
mpbir2and |
|
| 49 |
48
|
ex |
|
| 50 |
49
|
exlimdv |
|
| 51 |
50
|
impr |
|
| 52 |
12 51
|
impbida |
|