| Step |
Hyp |
Ref |
Expression |
| 1 |
|
locfinref.x |
|
| 2 |
|
locfinref.1 |
|
| 3 |
|
locfinref.2 |
|
| 4 |
|
locfinref.3 |
|
| 5 |
|
locfinref.4 |
|
| 6 |
|
locfinref.5 |
|
| 7 |
|
reff |
|
| 8 |
6 7
|
syl |
|
| 9 |
5 8
|
mpbid |
|
| 10 |
9
|
simprd |
|
| 11 |
|
funmpt |
|
| 12 |
11
|
a1i |
|
| 13 |
|
eqid |
|
| 14 |
13
|
dmmptss |
|
| 15 |
|
frn |
|
| 16 |
15
|
ad2antlr |
|
| 17 |
14 16
|
sstrid |
|
| 18 |
|
locfintop |
|
| 19 |
6 18
|
syl |
|
| 20 |
19
|
ad3antrrr |
|
| 21 |
|
cnvimass |
|
| 22 |
|
fdm |
|
| 23 |
22
|
ad3antlr |
|
| 24 |
21 23
|
sseqtrid |
|
| 25 |
4
|
ad3antrrr |
|
| 26 |
24 25
|
sstrd |
|
| 27 |
|
uniopn |
|
| 28 |
20 26 27
|
syl2anc |
|
| 29 |
28
|
ralrimiva |
|
| 30 |
13
|
rnmptss |
|
| 31 |
29 30
|
syl |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
32 33
|
refbas |
|
| 35 |
5 34
|
syl |
|
| 36 |
35
|
ad2antrr |
|
| 37 |
|
nfv |
|
| 38 |
|
nfra1 |
|
| 39 |
37 38
|
nfan |
|
| 40 |
|
nfre1 |
|
| 41 |
39 40
|
nfan |
|
| 42 |
|
ffn |
|
| 43 |
42
|
ad4antlr |
|
| 44 |
|
simplr |
|
| 45 |
|
fnfvelrn |
|
| 46 |
43 44 45
|
syl2anc |
|
| 47 |
|
ssid |
|
| 48 |
42
|
ad3antlr |
|
| 49 |
|
eqid |
|
| 50 |
|
fniniseg |
|
| 51 |
50
|
biimpar |
|
| 52 |
49 51
|
mpanr2 |
|
| 53 |
48 52
|
sylancom |
|
| 54 |
|
ssuni |
|
| 55 |
47 53 54
|
sylancr |
|
| 56 |
55
|
sselda |
|
| 57 |
|
sneq |
|
| 58 |
57
|
imaeq2d |
|
| 59 |
58
|
unieqd |
|
| 60 |
59
|
eleq2d |
|
| 61 |
60
|
rspcev |
|
| 62 |
46 56 61
|
syl2anc |
|
| 63 |
62
|
adantllr |
|
| 64 |
|
simpr |
|
| 65 |
41 63 64
|
r19.29af |
|
| 66 |
|
nfv |
|
| 67 |
39 66
|
nfan |
|
| 68 |
|
nfv |
|
| 69 |
67 68
|
nfan |
|
| 70 |
24
|
ad3antrrr |
|
| 71 |
|
simplr |
|
| 72 |
70 71
|
sseldd |
|
| 73 |
|
simpr |
|
| 74 |
|
simpr |
|
| 75 |
|
eluni2 |
|
| 76 |
74 75
|
sylib |
|
| 77 |
69 72 73 76
|
reximd2a |
|
| 78 |
77
|
r19.29an |
|
| 79 |
65 78
|
impbida |
|
| 80 |
|
eluni2 |
|
| 81 |
|
eliun |
|
| 82 |
79 80 81
|
3bitr4g |
|
| 83 |
82
|
eqrdv |
|
| 84 |
|
dfiun3g |
|
| 85 |
29 84
|
syl |
|
| 86 |
36 83 85
|
3eqtrd |
|
| 87 |
15
|
ad3antlr |
|
| 88 |
|
vex |
|
| 89 |
13
|
elrnmpt |
|
| 90 |
88 89
|
mp1i |
|
| 91 |
90
|
biimpa |
|
| 92 |
|
ssrexv |
|
| 93 |
87 91 92
|
sylc |
|
| 94 |
|
nfv |
|
| 95 |
|
nfmpt1 |
|
| 96 |
95
|
nfrn |
|
| 97 |
96
|
nfcri |
|
| 98 |
94 97
|
nfan |
|
| 99 |
|
simpr |
|
| 100 |
|
nfv |
|
| 101 |
39 100
|
nfan |
|
| 102 |
|
nfv |
|
| 103 |
101 102
|
nfan |
|
| 104 |
|
nfv |
|
| 105 |
103 104
|
nfan |
|
| 106 |
|
simp-5r |
|
| 107 |
42
|
ad5antlr |
|
| 108 |
|
fniniseg |
|
| 109 |
107 108
|
syl |
|
| 110 |
109
|
biimpa |
|
| 111 |
110
|
simpld |
|
| 112 |
|
rspa |
|
| 113 |
106 111 112
|
syl2anc |
|
| 114 |
110
|
simprd |
|
| 115 |
113 114
|
sseqtrd |
|
| 116 |
115
|
ex |
|
| 117 |
105 116
|
ralrimi |
|
| 118 |
|
unissb |
|
| 119 |
117 118
|
sylibr |
|
| 120 |
99 119
|
eqsstrd |
|
| 121 |
120
|
exp31 |
|
| 122 |
98 121
|
reximdai |
|
| 123 |
93 122
|
mpd |
|
| 124 |
123
|
ralrimiva |
|
| 125 |
|
vex |
|
| 126 |
125
|
rnex |
|
| 127 |
126
|
mptex |
|
| 128 |
|
rnexg |
|
| 129 |
127 128
|
mp1i |
|
| 130 |
|
eqid |
|
| 131 |
130 33
|
isref |
|
| 132 |
129 131
|
syl |
|
| 133 |
86 124 132
|
mpbir2and |
|
| 134 |
19
|
ad2antrr |
|
| 135 |
3
|
ad2antrr |
|
| 136 |
135 86
|
eqtrd |
|
| 137 |
|
nfv |
|
| 138 |
39 137
|
nfan |
|
| 139 |
|
simplr |
|
| 140 |
|
ffun |
|
| 141 |
140
|
ad6antlr |
|
| 142 |
|
imafi |
|
| 143 |
141 142
|
sylancom |
|
| 144 |
|
simp3 |
|
| 145 |
|
sneq |
|
| 146 |
145
|
imaeq2d |
|
| 147 |
146
|
unieqd |
|
| 148 |
125
|
cnvex |
|
| 149 |
|
imaexg |
|
| 150 |
148 149
|
ax-mp |
|
| 151 |
150
|
uniex |
|
| 152 |
147 13 151
|
fvmpt |
|
| 153 |
152
|
3ad2ant2 |
|
| 154 |
144 153
|
eqtrd |
|
| 155 |
154
|
ineq1d |
|
| 156 |
155
|
neeq1d |
|
| 157 |
126
|
a1i |
|
| 158 |
|
imaexg |
|
| 159 |
148 158
|
ax-mp |
|
| 160 |
159
|
uniex |
|
| 161 |
160 13
|
fnmpti |
|
| 162 |
|
dffn4 |
|
| 163 |
161 162
|
mpbi |
|
| 164 |
163
|
a1i |
|
| 165 |
156 157 164
|
rabfodom |
|
| 166 |
|
sneq |
|
| 167 |
166
|
imaeq2d |
|
| 168 |
167
|
unieqd |
|
| 169 |
168
|
ineq1d |
|
| 170 |
169
|
neeq1d |
|
| 171 |
170
|
cbvrabv |
|
| 172 |
165 171
|
breqtrdi |
|
| 173 |
126
|
rabex |
|
| 174 |
|
nfv |
|
| 175 |
|
nfrab1 |
|
| 176 |
175
|
nfel1 |
|
| 177 |
174 176
|
nfan |
|
| 178 |
|
nfv |
|
| 179 |
177 178
|
nfan |
|
| 180 |
|
nfv |
|
| 181 |
179 180
|
nfan |
|
| 182 |
|
nfv |
|
| 183 |
175 182
|
nfrexw |
|
| 184 |
42
|
ad5antlr |
|
| 185 |
184
|
ad5antr |
|
| 186 |
|
simplr |
|
| 187 |
|
fniniseg |
|
| 188 |
187
|
biimpa |
|
| 189 |
185 186 188
|
syl2anc |
|
| 190 |
189
|
simpld |
|
| 191 |
|
simpr |
|
| 192 |
|
rabid |
|
| 193 |
190 191 192
|
sylanbrc |
|
| 194 |
189
|
simprd |
|
| 195 |
|
fveqeq2 |
|
| 196 |
195
|
rspcev |
|
| 197 |
193 194 196
|
syl2anc |
|
| 198 |
|
uniinn0 |
|
| 199 |
198
|
biimpi |
|
| 200 |
199
|
adantl |
|
| 201 |
181 183 197 200
|
r19.29af2 |
|
| 202 |
201
|
ex |
|
| 203 |
202
|
ss2rabdv |
|
| 204 |
|
ssdomg |
|
| 205 |
173 203 204
|
mpsyl |
|
| 206 |
|
domtr |
|
| 207 |
172 205 206
|
syl2anc |
|
| 208 |
184
|
adantr |
|
| 209 |
|
dffn3 |
|
| 210 |
209
|
biimpi |
|
| 211 |
|
ssrab2 |
|
| 212 |
|
fimarab |
|
| 213 |
211 212
|
mpan2 |
|
| 214 |
208 210 213
|
3syl |
|
| 215 |
207 214
|
breqtrrd |
|
| 216 |
|
domfi |
|
| 217 |
143 215 216
|
syl2anc |
|
| 218 |
217
|
ex |
|
| 219 |
218
|
imdistanda |
|
| 220 |
219
|
imp |
|
| 221 |
|
simplll |
|
| 222 |
1 32
|
islocfin |
|
| 223 |
6 222
|
sylib |
|
| 224 |
223
|
simp3d |
|
| 225 |
224
|
r19.21bi |
|
| 226 |
221 225
|
sylancom |
|
| 227 |
138 139 220 226
|
reximd2a |
|
| 228 |
227
|
ralrimiva |
|
| 229 |
1 130
|
islocfin |
|
| 230 |
134 136 228 229
|
syl3anbrc |
|
| 231 |
|
funeq |
|
| 232 |
|
dmeq |
|
| 233 |
232
|
sseq1d |
|
| 234 |
|
rneq |
|
| 235 |
234
|
sseq1d |
|
| 236 |
231 233 235
|
3anbi123d |
|
| 237 |
234
|
breq1d |
|
| 238 |
234
|
eleq1d |
|
| 239 |
237 238
|
anbi12d |
|
| 240 |
236 239
|
anbi12d |
|
| 241 |
127 240
|
spcev |
|
| 242 |
12 17 31 133 230 241
|
syl32anc |
|
| 243 |
242
|
expl |
|
| 244 |
243
|
exlimdv |
|
| 245 |
10 244
|
mpd |
|