Metamath Proof Explorer


Theorem locfinreflem

Description: A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf , it is expressed by exposing a function f from the original cover U , which is taken as the index set. The solution is constructed by building unions, so the same method can be used to prove a similar theorem about closed covers. (Contributed by Thierry Arnoux, 29-Jan-2020)

Ref Expression
Hypotheses locfinref.x X = J
locfinref.1 φ U J
locfinref.2 φ X = U
locfinref.3 φ V J
locfinref.4 φ V Ref U
locfinref.5 φ V LocFin J
Assertion locfinreflem φ f Fun f dom f U ran f J ran f Ref U ran f LocFin J

Proof

Step Hyp Ref Expression
1 locfinref.x X = J
2 locfinref.1 φ U J
3 locfinref.2 φ X = U
4 locfinref.3 φ V J
5 locfinref.4 φ V Ref U
6 locfinref.5 φ V LocFin J
7 reff V LocFin J V Ref U U V g g : V U v V v g v
8 6 7 syl φ V Ref U U V g g : V U v V v g v
9 5 8 mpbid φ U V g g : V U v V v g v
10 9 simprd φ g g : V U v V v g v
11 funmpt Fun u ran g g -1 u
12 11 a1i φ g : V U v V v g v Fun u ran g g -1 u
13 eqid u ran g g -1 u = u ran g g -1 u
14 13 dmmptss dom u ran g g -1 u ran g
15 frn g : V U ran g U
16 15 ad2antlr φ g : V U v V v g v ran g U
17 14 16 sstrid φ g : V U v V v g v dom u ran g g -1 u U
18 locfintop V LocFin J J Top
19 6 18 syl φ J Top
20 19 ad3antrrr φ g : V U v V v g v u ran g J Top
21 cnvimass g -1 u dom g
22 fdm g : V U dom g = V
23 22 ad3antlr φ g : V U v V v g v u ran g dom g = V
24 21 23 sseqtrid φ g : V U v V v g v u ran g g -1 u V
25 4 ad3antrrr φ g : V U v V v g v u ran g V J
26 24 25 sstrd φ g : V U v V v g v u ran g g -1 u J
27 uniopn J Top g -1 u J g -1 u J
28 20 26 27 syl2anc φ g : V U v V v g v u ran g g -1 u J
29 28 ralrimiva φ g : V U v V v g v u ran g g -1 u J
30 13 rnmptss u ran g g -1 u J ran u ran g g -1 u J
31 29 30 syl φ g : V U v V v g v ran u ran g g -1 u J
32 eqid V = V
33 eqid U = U
34 32 33 refbas V Ref U U = V
35 5 34 syl φ U = V
36 35 ad2antrr φ g : V U v V v g v U = V
37 nfv v φ g : V U
38 nfra1 v v V v g v
39 37 38 nfan v φ g : V U v V v g v
40 nfre1 v v V x v
41 39 40 nfan v φ g : V U v V v g v v V x v
42 ffn g : V U g Fn V
43 42 ad4antlr φ g : V U v V v g v v V x v g Fn V
44 simplr φ g : V U v V v g v v V x v v V
45 fnfvelrn g Fn V v V g v ran g
46 43 44 45 syl2anc φ g : V U v V v g v v V x v g v ran g
47 ssid v v
48 42 ad3antlr φ g : V U v V v g v v V g Fn V
49 eqid g v = g v
50 fniniseg g Fn V v g -1 g v v V g v = g v
51 50 biimpar g Fn V v V g v = g v v g -1 g v
52 49 51 mpanr2 g Fn V v V v g -1 g v
53 48 52 sylancom φ g : V U v V v g v v V v g -1 g v
54 ssuni v v v g -1 g v v g -1 g v
55 47 53 54 sylancr φ g : V U v V v g v v V v g -1 g v
56 55 sselda φ g : V U v V v g v v V x v x g -1 g v
57 sneq u = g v u = g v
58 57 imaeq2d u = g v g -1 u = g -1 g v
59 58 unieqd u = g v g -1 u = g -1 g v
60 59 eleq2d u = g v x g -1 u x g -1 g v
61 60 rspcev g v ran g x g -1 g v u ran g x g -1 u
62 46 56 61 syl2anc φ g : V U v V v g v v V x v u ran g x g -1 u
63 62 adantllr φ g : V U v V v g v v V x v v V x v u ran g x g -1 u
64 simpr φ g : V U v V v g v v V x v v V x v
65 41 63 64 r19.29af φ g : V U v V v g v v V x v u ran g x g -1 u
66 nfv v u ran g
67 39 66 nfan v φ g : V U v V v g v u ran g
68 nfv v x g -1 u
69 67 68 nfan v φ g : V U v V v g v u ran g x g -1 u
70 24 ad3antrrr φ g : V U v V v g v u ran g x g -1 u v g -1 u x v g -1 u V
71 simplr φ g : V U v V v g v u ran g x g -1 u v g -1 u x v v g -1 u
72 70 71 sseldd φ g : V U v V v g v u ran g x g -1 u v g -1 u x v v V
73 simpr φ g : V U v V v g v u ran g x g -1 u v g -1 u x v x v
74 simpr φ g : V U v V v g v u ran g x g -1 u x g -1 u
75 eluni2 x g -1 u v g -1 u x v
76 74 75 sylib φ g : V U v V v g v u ran g x g -1 u v g -1 u x v
77 69 72 73 76 reximd2a φ g : V U v V v g v u ran g x g -1 u v V x v
78 77 r19.29an φ g : V U v V v g v u ran g x g -1 u v V x v
79 65 78 impbida φ g : V U v V v g v v V x v u ran g x g -1 u
80 eluni2 x V v V x v
81 eliun x u ran g g -1 u u ran g x g -1 u
82 79 80 81 3bitr4g φ g : V U v V v g v x V x u ran g g -1 u
83 82 eqrdv φ g : V U v V v g v V = u ran g g -1 u
84 dfiun3g u ran g g -1 u J u ran g g -1 u = ran u ran g g -1 u
85 29 84 syl φ g : V U v V v g v u ran g g -1 u = ran u ran g g -1 u
86 36 83 85 3eqtrd φ g : V U v V v g v U = ran u ran g g -1 u
87 15 ad3antlr φ g : V U v V v g v w ran u ran g g -1 u ran g U
88 vex w V
89 13 elrnmpt w V w ran u ran g g -1 u u ran g w = g -1 u
90 88 89 mp1i φ g : V U v V v g v w ran u ran g g -1 u u ran g w = g -1 u
91 90 biimpa φ g : V U v V v g v w ran u ran g g -1 u u ran g w = g -1 u
92 ssrexv ran g U u ran g w = g -1 u u U w = g -1 u
93 87 91 92 sylc φ g : V U v V v g v w ran u ran g g -1 u u U w = g -1 u
94 nfv u φ g : V U v V v g v
95 nfmpt1 _ u u ran g g -1 u
96 95 nfrn _ u ran u ran g g -1 u
97 96 nfcri u w ran u ran g g -1 u
98 94 97 nfan u φ g : V U v V v g v w ran u ran g g -1 u
99 simpr φ g : V U v V v g v w ran u ran g g -1 u u U w = g -1 u w = g -1 u
100 nfv v w ran u ran g g -1 u
101 39 100 nfan v φ g : V U v V v g v w ran u ran g g -1 u
102 nfv v u U
103 101 102 nfan v φ g : V U v V v g v w ran u ran g g -1 u u U
104 nfv v w = g -1 u
105 103 104 nfan v φ g : V U v V v g v w ran u ran g g -1 u u U w = g -1 u
106 simp-5r φ g : V U v V v g v w ran u ran g g -1 u u U w = g -1 u v g -1 u v V v g v
107 42 ad5antlr φ g : V U v V v g v w ran u ran g g -1 u u U w = g -1 u g Fn V
108 fniniseg g Fn V v g -1 u v V g v = u
109 107 108 syl φ g : V U v V v g v w ran u ran g g -1 u u U w = g -1 u v g -1 u v V g v = u
110 109 biimpa φ g : V U v V v g v w ran u ran g g -1 u u U w = g -1 u v g -1 u v V g v = u
111 110 simpld φ g : V U v V v g v w ran u ran g g -1 u u U w = g -1 u v g -1 u v V
112 rspa v V v g v v V v g v
113 106 111 112 syl2anc φ g : V U v V v g v w ran u ran g g -1 u u U w = g -1 u v g -1 u v g v
114 110 simprd φ g : V U v V v g v w ran u ran g g -1 u u U w = g -1 u v g -1 u g v = u
115 113 114 sseqtrd φ g : V U v V v g v w ran u ran g g -1 u u U w = g -1 u v g -1 u v u
116 115 ex φ g : V U v V v g v w ran u ran g g -1 u u U w = g -1 u v g -1 u v u
117 105 116 ralrimi φ g : V U v V v g v w ran u ran g g -1 u u U w = g -1 u v g -1 u v u
118 unissb g -1 u u v g -1 u v u
119 117 118 sylibr φ g : V U v V v g v w ran u ran g g -1 u u U w = g -1 u g -1 u u
120 99 119 eqsstrd φ g : V U v V v g v w ran u ran g g -1 u u U w = g -1 u w u
121 120 exp31 φ g : V U v V v g v w ran u ran g g -1 u u U w = g -1 u w u
122 98 121 reximdai φ g : V U v V v g v w ran u ran g g -1 u u U w = g -1 u u U w u
123 93 122 mpd φ g : V U v V v g v w ran u ran g g -1 u u U w u
124 123 ralrimiva φ g : V U v V v g v w ran u ran g g -1 u u U w u
125 vex g V
126 125 rnex ran g V
127 126 mptex u ran g g -1 u V
128 rnexg u ran g g -1 u V ran u ran g g -1 u V
129 127 128 mp1i φ g : V U v V v g v ran u ran g g -1 u V
130 eqid ran u ran g g -1 u = ran u ran g g -1 u
131 130 33 isref ran u ran g g -1 u V ran u ran g g -1 u Ref U U = ran u ran g g -1 u w ran u ran g g -1 u u U w u
132 129 131 syl φ g : V U v V v g v ran u ran g g -1 u Ref U U = ran u ran g g -1 u w ran u ran g g -1 u u U w u
133 86 124 132 mpbir2and φ g : V U v V v g v ran u ran g g -1 u Ref U
134 19 ad2antrr φ g : V U v V v g v J Top
135 3 ad2antrr φ g : V U v V v g v X = U
136 135 86 eqtrd φ g : V U v V v g v X = ran u ran g g -1 u
137 nfv v x X
138 39 137 nfan v φ g : V U v V v g v x X
139 simplr φ g : V U v V v g v x X v J x v j V | j v Fin v J
140 ffun g : V U Fun g
141 140 ad6antlr φ g : V U v V v g v x X v J x v j V | j v Fin Fun g
142 imafi Fun g j V | j v Fin g j V | j v Fin
143 141 142 sylancom φ g : V U v V v g v x X v J x v j V | j v Fin g j V | j v Fin
144 simp3 φ g : V U v V v g v x X v J x v j V | j v Fin k ran g w = u ran g g -1 u k w = u ran g g -1 u k
145 sneq u = k u = k
146 145 imaeq2d u = k g -1 u = g -1 k
147 146 unieqd u = k g -1 u = g -1 k
148 125 cnvex g -1 V
149 imaexg g -1 V g -1 k V
150 148 149 ax-mp g -1 k V
151 150 uniex g -1 k V
152 147 13 151 fvmpt k ran g u ran g g -1 u k = g -1 k
153 152 3ad2ant2 φ g : V U v V v g v x X v J x v j V | j v Fin k ran g w = u ran g g -1 u k u ran g g -1 u k = g -1 k
154 144 153 eqtrd φ g : V U v V v g v x X v J x v j V | j v Fin k ran g w = u ran g g -1 u k w = g -1 k
155 154 ineq1d φ g : V U v V v g v x X v J x v j V | j v Fin k ran g w = u ran g g -1 u k w v = g -1 k v
156 155 neeq1d φ g : V U v V v g v x X v J x v j V | j v Fin k ran g w = u ran g g -1 u k w v g -1 k v
157 126 a1i φ g : V U v V v g v x X v J x v j V | j v Fin ran g V
158 imaexg g -1 V g -1 u V
159 148 158 ax-mp g -1 u V
160 159 uniex g -1 u V
161 160 13 fnmpti u ran g g -1 u Fn ran g
162 dffn4 u ran g g -1 u Fn ran g u ran g g -1 u : ran g onto ran u ran g g -1 u
163 161 162 mpbi u ran g g -1 u : ran g onto ran u ran g g -1 u
164 163 a1i φ g : V U v V v g v x X v J x v j V | j v Fin u ran g g -1 u : ran g onto ran u ran g g -1 u
165 156 157 164 rabfodom φ g : V U v V v g v x X v J x v j V | j v Fin w ran u ran g g -1 u | w v k ran g | g -1 k v
166 sneq k = u k = u
167 166 imaeq2d k = u g -1 k = g -1 u
168 167 unieqd k = u g -1 k = g -1 u
169 168 ineq1d k = u g -1 k v = g -1 u v
170 169 neeq1d k = u g -1 k v g -1 u v
171 170 cbvrabv k ran g | g -1 k v = u ran g | g -1 u v
172 165 171 breqtrdi φ g : V U v V v g v x X v J x v j V | j v Fin w ran u ran g g -1 u | w v u ran g | g -1 u v
173 126 rabex u ran g | k j V | j v g k = u V
174 nfv j φ g : V U v V v g v x X v J x v
175 nfrab1 _ j j V | j v
176 175 nfel1 j j V | j v Fin
177 174 176 nfan j φ g : V U v V v g v x X v J x v j V | j v Fin
178 nfv j u ran g
179 177 178 nfan j φ g : V U v V v g v x X v J x v j V | j v Fin u ran g
180 nfv j g -1 u v
181 179 180 nfan j φ g : V U v V v g v x X v J x v j V | j v Fin u ran g g -1 u v
182 nfv j g k = u
183 175 182 nfrex j k j V | j v g k = u
184 42 ad5antlr φ g : V U v V v g v x X v J x v g Fn V
185 184 ad5antr φ g : V U v V v g v x X v J x v j V | j v Fin u ran g g -1 u v j g -1 u j v g Fn V
186 simplr φ g : V U v V v g v x X v J x v j V | j v Fin u ran g g -1 u v j g -1 u j v j g -1 u
187 fniniseg g Fn V j g -1 u j V g j = u
188 187 biimpa g Fn V j g -1 u j V g j = u
189 185 186 188 syl2anc φ g : V U v V v g v x X v J x v j V | j v Fin u ran g g -1 u v j g -1 u j v j V g j = u
190 189 simpld φ g : V U v V v g v x X v J x v j V | j v Fin u ran g g -1 u v j g -1 u j v j V
191 simpr φ g : V U v V v g v x X v J x v j V | j v Fin u ran g g -1 u v j g -1 u j v j v
192 rabid j j V | j v j V j v
193 190 191 192 sylanbrc φ g : V U v V v g v x X v J x v j V | j v Fin u ran g g -1 u v j g -1 u j v j j V | j v
194 189 simprd φ g : V U v V v g v x X v J x v j V | j v Fin u ran g g -1 u v j g -1 u j v g j = u
195 fveqeq2 k = j g k = u g j = u
196 195 rspcev j j V | j v g j = u k j V | j v g k = u
197 193 194 196 syl2anc φ g : V U v V v g v x X v J x v j V | j v Fin u ran g g -1 u v j g -1 u j v k j V | j v g k = u
198 uniinn0 g -1 u v j g -1 u j v
199 198 biimpi g -1 u v j g -1 u j v
200 199 adantl φ g : V U v V v g v x X v J x v j V | j v Fin u ran g g -1 u v j g -1 u j v
201 181 183 197 200 r19.29af2 φ g : V U v V v g v x X v J x v j V | j v Fin u ran g g -1 u v k j V | j v g k = u
202 201 ex φ g : V U v V v g v x X v J x v j V | j v Fin u ran g g -1 u v k j V | j v g k = u
203 202 ss2rabdv φ g : V U v V v g v x X v J x v j V | j v Fin u ran g | g -1 u v u ran g | k j V | j v g k = u
204 ssdomg u ran g | k j V | j v g k = u V u ran g | g -1 u v u ran g | k j V | j v g k = u u ran g | g -1 u v u ran g | k j V | j v g k = u
205 173 203 204 mpsyl φ g : V U v V v g v x X v J x v j V | j v Fin u ran g | g -1 u v u ran g | k j V | j v g k = u
206 domtr w ran u ran g g -1 u | w v u ran g | g -1 u v u ran g | g -1 u v u ran g | k j V | j v g k = u w ran u ran g g -1 u | w v u ran g | k j V | j v g k = u
207 172 205 206 syl2anc φ g : V U v V v g v x X v J x v j V | j v Fin w ran u ran g g -1 u | w v u ran g | k j V | j v g k = u
208 184 adantr φ g : V U v V v g v x X v J x v j V | j v Fin g Fn V
209 dffn3 g Fn V g : V ran g
210 209 biimpi g Fn V g : V ran g
211 ssrab2 j V | j v V
212 fimarab g : V ran g j V | j v V g j V | j v = u ran g | k j V | j v g k = u
213 211 212 mpan2 g : V ran g g j V | j v = u ran g | k j V | j v g k = u
214 208 210 213 3syl φ g : V U v V v g v x X v J x v j V | j v Fin g j V | j v = u ran g | k j V | j v g k = u
215 207 214 breqtrrd φ g : V U v V v g v x X v J x v j V | j v Fin w ran u ran g g -1 u | w v g j V | j v
216 domfi g j V | j v Fin w ran u ran g g -1 u | w v g j V | j v w ran u ran g g -1 u | w v Fin
217 143 215 216 syl2anc φ g : V U v V v g v x X v J x v j V | j v Fin w ran u ran g g -1 u | w v Fin
218 217 ex φ g : V U v V v g v x X v J x v j V | j v Fin w ran u ran g g -1 u | w v Fin
219 218 imdistanda φ g : V U v V v g v x X v J x v j V | j v Fin x v w ran u ran g g -1 u | w v Fin
220 219 imp φ g : V U v V v g v x X v J x v j V | j v Fin x v w ran u ran g g -1 u | w v Fin
221 simplll φ g : V U v V v g v x X φ
222 1 32 islocfin V LocFin J J Top X = V x X v J x v j V | j v Fin
223 6 222 sylib φ J Top X = V x X v J x v j V | j v Fin
224 223 simp3d φ x X v J x v j V | j v Fin
225 224 r19.21bi φ x X v J x v j V | j v Fin
226 221 225 sylancom φ g : V U v V v g v x X v J x v j V | j v Fin
227 138 139 220 226 reximd2a φ g : V U v V v g v x X v J x v w ran u ran g g -1 u | w v Fin
228 227 ralrimiva φ g : V U v V v g v x X v J x v w ran u ran g g -1 u | w v Fin
229 1 130 islocfin ran u ran g g -1 u LocFin J J Top X = ran u ran g g -1 u x X v J x v w ran u ran g g -1 u | w v Fin
230 134 136 228 229 syl3anbrc φ g : V U v V v g v ran u ran g g -1 u LocFin J
231 funeq f = u ran g g -1 u Fun f Fun u ran g g -1 u
232 dmeq f = u ran g g -1 u dom f = dom u ran g g -1 u
233 232 sseq1d f = u ran g g -1 u dom f U dom u ran g g -1 u U
234 rneq f = u ran g g -1 u ran f = ran u ran g g -1 u
235 234 sseq1d f = u ran g g -1 u ran f J ran u ran g g -1 u J
236 231 233 235 3anbi123d f = u ran g g -1 u Fun f dom f U ran f J Fun u ran g g -1 u dom u ran g g -1 u U ran u ran g g -1 u J
237 234 breq1d f = u ran g g -1 u ran f Ref U ran u ran g g -1 u Ref U
238 234 eleq1d f = u ran g g -1 u ran f LocFin J ran u ran g g -1 u LocFin J
239 237 238 anbi12d f = u ran g g -1 u ran f Ref U ran f LocFin J ran u ran g g -1 u Ref U ran u ran g g -1 u LocFin J
240 236 239 anbi12d f = u ran g g -1 u Fun f dom f U ran f J ran f Ref U ran f LocFin J Fun u ran g g -1 u dom u ran g g -1 u U ran u ran g g -1 u J ran u ran g g -1 u Ref U ran u ran g g -1 u LocFin J
241 127 240 spcev Fun u ran g g -1 u dom u ran g g -1 u U ran u ran g g -1 u J ran u ran g g -1 u Ref U ran u ran g g -1 u LocFin J f Fun f dom f U ran f J ran f Ref U ran f LocFin J
242 12 17 31 133 230 241 syl32anc φ g : V U v V v g v f Fun f dom f U ran f J ran f Ref U ran f LocFin J
243 242 expl φ g : V U v V v g v f Fun f dom f U ran f J ran f Ref U ran f LocFin J
244 243 exlimdv φ g g : V U v V v g v f Fun f dom f U ran f J ran f Ref U ran f LocFin J
245 10 244 mpd φ f Fun f dom f U ran f J ran f Ref U ran f LocFin J