Metamath Proof Explorer


Theorem uniinn0

Description: Sufficient and necessary condition for a union to intersect with a given set. (Contributed by Thierry Arnoux, 27-Jan-2020)

Ref Expression
Assertion uniinn0 ABxAxB

Proof

Step Hyp Ref Expression
1 nne ¬xBxB=
2 1 ralbii xA¬xBxAxB=
3 ralnex xA¬xB¬xAxB
4 unissb AVBxAxVB
5 disj2 AB=AVB
6 disj2 xB=xVB
7 6 ralbii xAxB=xAxVB
8 4 5 7 3bitr4ri xAxB=AB=
9 2 3 8 3bitr3i ¬xAxBAB=
10 9 necon1abii ABxAxB