| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nne |
|- ( -. ( x i^i B ) =/= (/) <-> ( x i^i B ) = (/) ) |
| 2 |
1
|
ralbii |
|- ( A. x e. A -. ( x i^i B ) =/= (/) <-> A. x e. A ( x i^i B ) = (/) ) |
| 3 |
|
ralnex |
|- ( A. x e. A -. ( x i^i B ) =/= (/) <-> -. E. x e. A ( x i^i B ) =/= (/) ) |
| 4 |
|
unissb |
|- ( U. A C_ ( _V \ B ) <-> A. x e. A x C_ ( _V \ B ) ) |
| 5 |
|
disj2 |
|- ( ( U. A i^i B ) = (/) <-> U. A C_ ( _V \ B ) ) |
| 6 |
|
disj2 |
|- ( ( x i^i B ) = (/) <-> x C_ ( _V \ B ) ) |
| 7 |
6
|
ralbii |
|- ( A. x e. A ( x i^i B ) = (/) <-> A. x e. A x C_ ( _V \ B ) ) |
| 8 |
4 5 7
|
3bitr4ri |
|- ( A. x e. A ( x i^i B ) = (/) <-> ( U. A i^i B ) = (/) ) |
| 9 |
2 3 8
|
3bitr3i |
|- ( -. E. x e. A ( x i^i B ) =/= (/) <-> ( U. A i^i B ) = (/) ) |
| 10 |
9
|
necon1abii |
|- ( ( U. A i^i B ) =/= (/) <-> E. x e. A ( x i^i B ) =/= (/) ) |