Metamath Proof Explorer


Theorem uniinn0

Description: Sufficient and necessary condition for a union to intersect with a given set. (Contributed by Thierry Arnoux, 27-Jan-2020)

Ref Expression
Assertion uniinn0
|- ( ( U. A i^i B ) =/= (/) <-> E. x e. A ( x i^i B ) =/= (/) )

Proof

Step Hyp Ref Expression
1 nne
 |-  ( -. ( x i^i B ) =/= (/) <-> ( x i^i B ) = (/) )
2 1 ralbii
 |-  ( A. x e. A -. ( x i^i B ) =/= (/) <-> A. x e. A ( x i^i B ) = (/) )
3 ralnex
 |-  ( A. x e. A -. ( x i^i B ) =/= (/) <-> -. E. x e. A ( x i^i B ) =/= (/) )
4 unissb
 |-  ( U. A C_ ( _V \ B ) <-> A. x e. A x C_ ( _V \ B ) )
5 disj2
 |-  ( ( U. A i^i B ) = (/) <-> U. A C_ ( _V \ B ) )
6 disj2
 |-  ( ( x i^i B ) = (/) <-> x C_ ( _V \ B ) )
7 6 ralbii
 |-  ( A. x e. A ( x i^i B ) = (/) <-> A. x e. A x C_ ( _V \ B ) )
8 4 5 7 3bitr4ri
 |-  ( A. x e. A ( x i^i B ) = (/) <-> ( U. A i^i B ) = (/) )
9 2 3 8 3bitr3i
 |-  ( -. E. x e. A ( x i^i B ) =/= (/) <-> ( U. A i^i B ) = (/) )
10 9 necon1abii
 |-  ( ( U. A i^i B ) =/= (/) <-> E. x e. A ( x i^i B ) =/= (/) )