| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nne |
⊢ ( ¬ ( 𝑥 ∩ 𝐵 ) ≠ ∅ ↔ ( 𝑥 ∩ 𝐵 ) = ∅ ) |
| 2 |
1
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ∩ 𝐵 ) ≠ ∅ ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐵 ) = ∅ ) |
| 3 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ∩ 𝐵 ) ≠ ∅ ↔ ¬ ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐵 ) ≠ ∅ ) |
| 4 |
|
unissb |
⊢ ( ∪ 𝐴 ⊆ ( V ∖ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ( V ∖ 𝐵 ) ) |
| 5 |
|
disj2 |
⊢ ( ( ∪ 𝐴 ∩ 𝐵 ) = ∅ ↔ ∪ 𝐴 ⊆ ( V ∖ 𝐵 ) ) |
| 6 |
|
disj2 |
⊢ ( ( 𝑥 ∩ 𝐵 ) = ∅ ↔ 𝑥 ⊆ ( V ∖ 𝐵 ) ) |
| 7 |
6
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ( V ∖ 𝐵 ) ) |
| 8 |
4 5 7
|
3bitr4ri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐵 ) = ∅ ↔ ( ∪ 𝐴 ∩ 𝐵 ) = ∅ ) |
| 9 |
2 3 8
|
3bitr3i |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐵 ) ≠ ∅ ↔ ( ∪ 𝐴 ∩ 𝐵 ) = ∅ ) |
| 10 |
9
|
necon1abii |
⊢ ( ( ∪ 𝐴 ∩ 𝐵 ) ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐵 ) ≠ ∅ ) |