Metamath Proof Explorer


Theorem uniinn0

Description: Sufficient and necessary condition for a union to intersect with a given set. (Contributed by Thierry Arnoux, 27-Jan-2020)

Ref Expression
Assertion uniinn0 ( ( 𝐴𝐵 ) ≠ ∅ ↔ ∃ 𝑥𝐴 ( 𝑥𝐵 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 nne ( ¬ ( 𝑥𝐵 ) ≠ ∅ ↔ ( 𝑥𝐵 ) = ∅ )
2 1 ralbii ( ∀ 𝑥𝐴 ¬ ( 𝑥𝐵 ) ≠ ∅ ↔ ∀ 𝑥𝐴 ( 𝑥𝐵 ) = ∅ )
3 ralnex ( ∀ 𝑥𝐴 ¬ ( 𝑥𝐵 ) ≠ ∅ ↔ ¬ ∃ 𝑥𝐴 ( 𝑥𝐵 ) ≠ ∅ )
4 unissb ( 𝐴 ⊆ ( V ∖ 𝐵 ) ↔ ∀ 𝑥𝐴 𝑥 ⊆ ( V ∖ 𝐵 ) )
5 disj2 ( ( 𝐴𝐵 ) = ∅ ↔ 𝐴 ⊆ ( V ∖ 𝐵 ) )
6 disj2 ( ( 𝑥𝐵 ) = ∅ ↔ 𝑥 ⊆ ( V ∖ 𝐵 ) )
7 6 ralbii ( ∀ 𝑥𝐴 ( 𝑥𝐵 ) = ∅ ↔ ∀ 𝑥𝐴 𝑥 ⊆ ( V ∖ 𝐵 ) )
8 4 5 7 3bitr4ri ( ∀ 𝑥𝐴 ( 𝑥𝐵 ) = ∅ ↔ ( 𝐴𝐵 ) = ∅ )
9 2 3 8 3bitr3i ( ¬ ∃ 𝑥𝐴 ( 𝑥𝐵 ) ≠ ∅ ↔ ( 𝐴𝐵 ) = ∅ )
10 9 necon1abii ( ( 𝐴𝐵 ) ≠ ∅ ↔ ∃ 𝑥𝐴 ( 𝑥𝐵 ) ≠ ∅ )