Metamath Proof Explorer


Theorem locfinref

Description: A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf , it is expressed by exposing a function f from the original cover U , which is taken as the index set. (Contributed by Thierry Arnoux, 31-Jan-2020)

Ref Expression
Hypotheses locfinref.x X = J
locfinref.1 φ U J
locfinref.2 φ X = U
locfinref.3 φ V J
locfinref.4 φ V Ref U
locfinref.5 φ V LocFin J
Assertion locfinref φ f f : U J ran f Ref U ran f LocFin J

Proof

Step Hyp Ref Expression
1 locfinref.x X = J
2 locfinref.1 φ U J
3 locfinref.2 φ X = U
4 locfinref.3 φ V J
5 locfinref.4 φ V Ref U
6 locfinref.5 φ V LocFin J
7 f0 : J
8 simpr φ U = U =
9 8 feq2d φ U = : U J : J
10 7 9 mpbiri φ U = : U J
11 rn0 ran =
12 0ex V
13 refref V Ref
14 12 13 ax-mp Ref
15 11 14 eqbrtri ran Ref
16 15 8 breqtrrid φ U = ran Ref U
17 sn0top Top
18 17 a1i φ U = Top
19 eqidd φ U = =
20 ral0 x n x n s ran | s n Fin
21 20 a1i φ U = x n x n s ran | s n Fin
22 12 unisn =
23 22 eqcomi =
24 11 unieqi ran =
25 uni0 =
26 24 25 eqtr2i = ran
27 23 26 islocfin ran LocFin Top = x n x n s ran | s n Fin
28 18 19 21 27 syl3anbrc φ U = ran LocFin
29 3 adantr φ U = X = U
30 8 unieqd φ U = U =
31 29 30 eqtrd φ U = X =
32 31 1 25 3eqtr3g φ U = J =
33 locfintop V LocFin J J Top
34 0top J Top J = J =
35 6 33 34 3syl φ J = J =
36 35 adantr φ U = J = J =
37 32 36 mpbid φ U = J =
38 37 fveq2d φ U = LocFin J = LocFin
39 28 38 eleqtrrd φ U = ran LocFin J
40 feq1 f = f : U J : U J
41 rneq f = ran f = ran
42 41 breq1d f = ran f Ref U ran Ref U
43 41 eleq1d f = ran f LocFin J ran LocFin J
44 40 42 43 3anbi123d f = f : U J ran f Ref U ran f LocFin J : U J ran Ref U ran LocFin J
45 12 44 spcev : U J ran Ref U ran LocFin J f f : U J ran f Ref U ran f LocFin J
46 10 16 39 45 syl3anc φ U = f f : U J ran f Ref U ran f LocFin J
47 1 2 3 4 5 6 locfinreflem φ g Fun g dom g U ran g J ran g Ref U ran g LocFin J
48 47 adantr φ U g Fun g dom g U ran g J ran g Ref U ran g LocFin J
49 simpl φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J φ U
50 simprl1 φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J Fun g
51 fdmrn Fun g g : dom g ran g
52 50 51 sylib φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J g : dom g ran g
53 simprl3 φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g J
54 52 53 fssd φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J g : dom g J
55 fconstg V U dom g × : U dom g
56 12 55 mp1i φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J U dom g × : U dom g
57 0opn J Top J
58 6 33 57 3syl φ J
59 58 ad2antrr φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J J
60 59 snssd φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J J
61 56 60 fssd φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J U dom g × : U dom g J
62 disjdif dom g U dom g =
63 62 a1i φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J dom g U dom g =
64 fun2 g : dom g J U dom g × : U dom g J dom g U dom g = g U dom g × : dom g U dom g J
65 54 61 63 64 syl21anc φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J g U dom g × : dom g U dom g J
66 simprl2 φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J dom g U
67 undif dom g U dom g U dom g = U
68 66 67 sylib φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J dom g U dom g = U
69 68 feq2d φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J g U dom g × : dom g U dom g J g U dom g × : U J
70 65 69 mpbid φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J g U dom g × : U J
71 simpr φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × = ran g ran g U dom g × = ran g
72 simprrl φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g Ref U
73 72 adantr φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × = ran g ran g Ref U
74 71 73 eqbrtrd φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × = ran g ran g U dom g × Ref U
75 simpr φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × = ran g ran g U dom g × = ran g
76 49 simprd φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J U
77 refun0 ran g Ref U U ran g Ref U
78 72 76 77 syl2anc φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g Ref U
79 78 adantr φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × = ran g ran g Ref U
80 75 79 eqbrtrd φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × = ran g ran g U dom g × Ref U
81 rnxpss ran U dom g ×
82 sssn ran U dom g × ran U dom g × = ran U dom g × =
83 81 82 mpbi ran U dom g × = ran U dom g × =
84 rnun ran g U dom g × = ran g ran U dom g ×
85 uneq2 ran U dom g × = ran g ran U dom g × = ran g
86 84 85 syl5eq ran U dom g × = ran g U dom g × = ran g
87 un0 ran g = ran g
88 86 87 eqtrdi ran U dom g × = ran g U dom g × = ran g
89 uneq2 ran U dom g × = ran g ran U dom g × = ran g
90 84 89 syl5eq ran U dom g × = ran g U dom g × = ran g
91 88 90 orim12i ran U dom g × = ran U dom g × = ran g U dom g × = ran g ran g U dom g × = ran g
92 83 91 mp1i φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × = ran g ran g U dom g × = ran g
93 74 80 92 mpjaodan φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × Ref U
94 simprrr φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g LocFin J
95 94 adantr φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × = ran g ran g LocFin J
96 71 95 eqeltrd φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × = ran g ran g U dom g × LocFin J
97 94 adantr φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × = ran g ran g LocFin J
98 snfi Fin
99 98 a1i φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × = ran g Fin
100 59 adantr φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × = ran g J
101 100 snssd φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × = ran g J
102 101 unissd φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × = ran g J
103 lfinun ran g LocFin J Fin J ran g LocFin J
104 97 99 102 103 syl3anc φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × = ran g ran g LocFin J
105 75 104 eqeltrd φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × = ran g ran g U dom g × LocFin J
106 96 105 92 mpjaodan φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J ran g U dom g × LocFin J
107 refrel Rel Ref
108 107 brrelex2i V Ref U U V
109 difexg U V U dom g V
110 5 108 109 3syl φ U dom g V
111 110 adantr φ U U dom g V
112 p0ex V
113 xpexg U dom g V V U dom g × V
114 112 113 mpan2 U dom g V U dom g × V
115 vex g V
116 unexg g V U dom g × V g U dom g × V
117 115 116 mpan U dom g × V g U dom g × V
118 feq1 f = g U dom g × f : U J g U dom g × : U J
119 rneq f = g U dom g × ran f = ran g U dom g ×
120 119 breq1d f = g U dom g × ran f Ref U ran g U dom g × Ref U
121 119 eleq1d f = g U dom g × ran f LocFin J ran g U dom g × LocFin J
122 118 120 121 3anbi123d f = g U dom g × f : U J ran f Ref U ran f LocFin J g U dom g × : U J ran g U dom g × Ref U ran g U dom g × LocFin J
123 122 spcegv g U dom g × V g U dom g × : U J ran g U dom g × Ref U ran g U dom g × LocFin J f f : U J ran f Ref U ran f LocFin J
124 111 114 117 123 4syl φ U g U dom g × : U J ran g U dom g × Ref U ran g U dom g × LocFin J f f : U J ran f Ref U ran f LocFin J
125 124 imp φ U g U dom g × : U J ran g U dom g × Ref U ran g U dom g × LocFin J f f : U J ran f Ref U ran f LocFin J
126 49 70 93 106 125 syl13anc φ U Fun g dom g U ran g J ran g Ref U ran g LocFin J f f : U J ran f Ref U ran f LocFin J
127 48 126 exlimddv φ U f f : U J ran f Ref U ran f LocFin J
128 46 127 pm2.61dane φ f f : U J ran f Ref U ran f LocFin J