| Step |
Hyp |
Ref |
Expression |
| 1 |
|
locfinref.x |
|
| 2 |
|
locfinref.1 |
|
| 3 |
|
locfinref.2 |
|
| 4 |
|
locfinref.3 |
|
| 5 |
|
locfinref.4 |
|
| 6 |
|
locfinref.5 |
|
| 7 |
|
f0 |
|
| 8 |
|
simpr |
|
| 9 |
8
|
feq2d |
|
| 10 |
7 9
|
mpbiri |
|
| 11 |
|
rn0 |
|
| 12 |
|
0ex |
|
| 13 |
|
refref |
|
| 14 |
12 13
|
ax-mp |
|
| 15 |
11 14
|
eqbrtri |
|
| 16 |
15 8
|
breqtrrid |
|
| 17 |
|
sn0top |
|
| 18 |
17
|
a1i |
|
| 19 |
|
eqidd |
|
| 20 |
|
ral0 |
|
| 21 |
20
|
a1i |
|
| 22 |
12
|
unisn |
|
| 23 |
22
|
eqcomi |
|
| 24 |
11
|
unieqi |
|
| 25 |
|
uni0 |
|
| 26 |
24 25
|
eqtr2i |
|
| 27 |
23 26
|
islocfin |
|
| 28 |
18 19 21 27
|
syl3anbrc |
|
| 29 |
3
|
adantr |
|
| 30 |
8
|
unieqd |
|
| 31 |
29 30
|
eqtrd |
|
| 32 |
31 1 25
|
3eqtr3g |
|
| 33 |
|
locfintop |
|
| 34 |
|
0top |
|
| 35 |
6 33 34
|
3syl |
|
| 36 |
35
|
adantr |
|
| 37 |
32 36
|
mpbid |
|
| 38 |
37
|
fveq2d |
|
| 39 |
28 38
|
eleqtrrd |
|
| 40 |
|
feq1 |
|
| 41 |
|
rneq |
|
| 42 |
41
|
breq1d |
|
| 43 |
41
|
eleq1d |
|
| 44 |
40 42 43
|
3anbi123d |
|
| 45 |
12 44
|
spcev |
|
| 46 |
10 16 39 45
|
syl3anc |
|
| 47 |
1 2 3 4 5 6
|
locfinreflem |
|
| 48 |
47
|
adantr |
|
| 49 |
|
simpl |
|
| 50 |
|
simprl1 |
|
| 51 |
|
fdmrn |
|
| 52 |
50 51
|
sylib |
|
| 53 |
|
simprl3 |
|
| 54 |
52 53
|
fssd |
|
| 55 |
|
fconstg |
|
| 56 |
12 55
|
mp1i |
|
| 57 |
|
0opn |
|
| 58 |
6 33 57
|
3syl |
|
| 59 |
58
|
ad2antrr |
|
| 60 |
59
|
snssd |
|
| 61 |
56 60
|
fssd |
|
| 62 |
|
disjdif |
|
| 63 |
62
|
a1i |
|
| 64 |
|
fun2 |
|
| 65 |
54 61 63 64
|
syl21anc |
|
| 66 |
|
simprl2 |
|
| 67 |
|
undif |
|
| 68 |
66 67
|
sylib |
|
| 69 |
68
|
feq2d |
|
| 70 |
65 69
|
mpbid |
|
| 71 |
|
simpr |
|
| 72 |
|
simprrl |
|
| 73 |
72
|
adantr |
|
| 74 |
71 73
|
eqbrtrd |
|
| 75 |
|
simpr |
|
| 76 |
49
|
simprd |
|
| 77 |
|
refun0 |
|
| 78 |
72 76 77
|
syl2anc |
|
| 79 |
78
|
adantr |
|
| 80 |
75 79
|
eqbrtrd |
|
| 81 |
|
rnxpss |
|
| 82 |
|
sssn |
|
| 83 |
81 82
|
mpbi |
|
| 84 |
|
rnun |
|
| 85 |
|
uneq2 |
|
| 86 |
84 85
|
eqtrid |
|
| 87 |
|
un0 |
|
| 88 |
86 87
|
eqtrdi |
|
| 89 |
|
uneq2 |
|
| 90 |
84 89
|
eqtrid |
|
| 91 |
88 90
|
orim12i |
|
| 92 |
83 91
|
mp1i |
|
| 93 |
74 80 92
|
mpjaodan |
|
| 94 |
|
simprrr |
|
| 95 |
94
|
adantr |
|
| 96 |
71 95
|
eqeltrd |
|
| 97 |
94
|
adantr |
|
| 98 |
|
snfi |
|
| 99 |
98
|
a1i |
|
| 100 |
59
|
adantr |
|
| 101 |
100
|
snssd |
|
| 102 |
101
|
unissd |
|
| 103 |
|
lfinun |
|
| 104 |
97 99 102 103
|
syl3anc |
|
| 105 |
75 104
|
eqeltrd |
|
| 106 |
96 105 92
|
mpjaodan |
|
| 107 |
|
refrel |
|
| 108 |
107
|
brrelex2i |
|
| 109 |
|
difexg |
|
| 110 |
5 108 109
|
3syl |
|
| 111 |
110
|
adantr |
|
| 112 |
|
p0ex |
|
| 113 |
|
xpexg |
|
| 114 |
112 113
|
mpan2 |
|
| 115 |
|
vex |
|
| 116 |
|
unexg |
|
| 117 |
115 116
|
mpan |
|
| 118 |
|
feq1 |
|
| 119 |
|
rneq |
|
| 120 |
119
|
breq1d |
|
| 121 |
119
|
eleq1d |
|
| 122 |
118 120 121
|
3anbi123d |
|
| 123 |
122
|
spcegv |
|
| 124 |
111 114 117 123
|
4syl |
|
| 125 |
124
|
imp |
|
| 126 |
49 70 93 106 125
|
syl13anc |
|
| 127 |
48 126
|
exlimddv |
|
| 128 |
46 127
|
pm2.61dane |
|