Step |
Hyp |
Ref |
Expression |
1 |
|
locfinref.x |
|- X = U. J |
2 |
|
locfinref.1 |
|- ( ph -> U C_ J ) |
3 |
|
locfinref.2 |
|- ( ph -> X = U. U ) |
4 |
|
locfinref.3 |
|- ( ph -> V C_ J ) |
5 |
|
locfinref.4 |
|- ( ph -> V Ref U ) |
6 |
|
locfinref.5 |
|- ( ph -> V e. ( LocFin ` J ) ) |
7 |
|
f0 |
|- (/) : (/) --> J |
8 |
|
simpr |
|- ( ( ph /\ U = (/) ) -> U = (/) ) |
9 |
8
|
feq2d |
|- ( ( ph /\ U = (/) ) -> ( (/) : U --> J <-> (/) : (/) --> J ) ) |
10 |
7 9
|
mpbiri |
|- ( ( ph /\ U = (/) ) -> (/) : U --> J ) |
11 |
|
rn0 |
|- ran (/) = (/) |
12 |
|
0ex |
|- (/) e. _V |
13 |
|
refref |
|- ( (/) e. _V -> (/) Ref (/) ) |
14 |
12 13
|
ax-mp |
|- (/) Ref (/) |
15 |
11 14
|
eqbrtri |
|- ran (/) Ref (/) |
16 |
15 8
|
breqtrrid |
|- ( ( ph /\ U = (/) ) -> ran (/) Ref U ) |
17 |
|
sn0top |
|- { (/) } e. Top |
18 |
17
|
a1i |
|- ( ( ph /\ U = (/) ) -> { (/) } e. Top ) |
19 |
|
eqidd |
|- ( ( ph /\ U = (/) ) -> (/) = (/) ) |
20 |
|
ral0 |
|- A. x e. (/) E. n e. { (/) } ( x e. n /\ { s e. ran (/) | ( s i^i n ) =/= (/) } e. Fin ) |
21 |
20
|
a1i |
|- ( ( ph /\ U = (/) ) -> A. x e. (/) E. n e. { (/) } ( x e. n /\ { s e. ran (/) | ( s i^i n ) =/= (/) } e. Fin ) ) |
22 |
12
|
unisn |
|- U. { (/) } = (/) |
23 |
22
|
eqcomi |
|- (/) = U. { (/) } |
24 |
11
|
unieqi |
|- U. ran (/) = U. (/) |
25 |
|
uni0 |
|- U. (/) = (/) |
26 |
24 25
|
eqtr2i |
|- (/) = U. ran (/) |
27 |
23 26
|
islocfin |
|- ( ran (/) e. ( LocFin ` { (/) } ) <-> ( { (/) } e. Top /\ (/) = (/) /\ A. x e. (/) E. n e. { (/) } ( x e. n /\ { s e. ran (/) | ( s i^i n ) =/= (/) } e. Fin ) ) ) |
28 |
18 19 21 27
|
syl3anbrc |
|- ( ( ph /\ U = (/) ) -> ran (/) e. ( LocFin ` { (/) } ) ) |
29 |
3
|
adantr |
|- ( ( ph /\ U = (/) ) -> X = U. U ) |
30 |
8
|
unieqd |
|- ( ( ph /\ U = (/) ) -> U. U = U. (/) ) |
31 |
29 30
|
eqtrd |
|- ( ( ph /\ U = (/) ) -> X = U. (/) ) |
32 |
31 1 25
|
3eqtr3g |
|- ( ( ph /\ U = (/) ) -> U. J = (/) ) |
33 |
|
locfintop |
|- ( V e. ( LocFin ` J ) -> J e. Top ) |
34 |
|
0top |
|- ( J e. Top -> ( U. J = (/) <-> J = { (/) } ) ) |
35 |
6 33 34
|
3syl |
|- ( ph -> ( U. J = (/) <-> J = { (/) } ) ) |
36 |
35
|
adantr |
|- ( ( ph /\ U = (/) ) -> ( U. J = (/) <-> J = { (/) } ) ) |
37 |
32 36
|
mpbid |
|- ( ( ph /\ U = (/) ) -> J = { (/) } ) |
38 |
37
|
fveq2d |
|- ( ( ph /\ U = (/) ) -> ( LocFin ` J ) = ( LocFin ` { (/) } ) ) |
39 |
28 38
|
eleqtrrd |
|- ( ( ph /\ U = (/) ) -> ran (/) e. ( LocFin ` J ) ) |
40 |
|
feq1 |
|- ( f = (/) -> ( f : U --> J <-> (/) : U --> J ) ) |
41 |
|
rneq |
|- ( f = (/) -> ran f = ran (/) ) |
42 |
41
|
breq1d |
|- ( f = (/) -> ( ran f Ref U <-> ran (/) Ref U ) ) |
43 |
41
|
eleq1d |
|- ( f = (/) -> ( ran f e. ( LocFin ` J ) <-> ran (/) e. ( LocFin ` J ) ) ) |
44 |
40 42 43
|
3anbi123d |
|- ( f = (/) -> ( ( f : U --> J /\ ran f Ref U /\ ran f e. ( LocFin ` J ) ) <-> ( (/) : U --> J /\ ran (/) Ref U /\ ran (/) e. ( LocFin ` J ) ) ) ) |
45 |
12 44
|
spcev |
|- ( ( (/) : U --> J /\ ran (/) Ref U /\ ran (/) e. ( LocFin ` J ) ) -> E. f ( f : U --> J /\ ran f Ref U /\ ran f e. ( LocFin ` J ) ) ) |
46 |
10 16 39 45
|
syl3anc |
|- ( ( ph /\ U = (/) ) -> E. f ( f : U --> J /\ ran f Ref U /\ ran f e. ( LocFin ` J ) ) ) |
47 |
1 2 3 4 5 6
|
locfinreflem |
|- ( ph -> E. g ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) |
48 |
47
|
adantr |
|- ( ( ph /\ U =/= (/) ) -> E. g ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) |
49 |
|
simpl |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> ( ph /\ U =/= (/) ) ) |
50 |
|
simprl1 |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> Fun g ) |
51 |
|
fdmrn |
|- ( Fun g <-> g : dom g --> ran g ) |
52 |
50 51
|
sylib |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> g : dom g --> ran g ) |
53 |
|
simprl3 |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> ran g C_ J ) |
54 |
52 53
|
fssd |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> g : dom g --> J ) |
55 |
|
fconstg |
|- ( (/) e. _V -> ( ( U \ dom g ) X. { (/) } ) : ( U \ dom g ) --> { (/) } ) |
56 |
12 55
|
mp1i |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> ( ( U \ dom g ) X. { (/) } ) : ( U \ dom g ) --> { (/) } ) |
57 |
|
0opn |
|- ( J e. Top -> (/) e. J ) |
58 |
6 33 57
|
3syl |
|- ( ph -> (/) e. J ) |
59 |
58
|
ad2antrr |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> (/) e. J ) |
60 |
59
|
snssd |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> { (/) } C_ J ) |
61 |
56 60
|
fssd |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> ( ( U \ dom g ) X. { (/) } ) : ( U \ dom g ) --> J ) |
62 |
|
disjdif |
|- ( dom g i^i ( U \ dom g ) ) = (/) |
63 |
62
|
a1i |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> ( dom g i^i ( U \ dom g ) ) = (/) ) |
64 |
|
fun2 |
|- ( ( ( g : dom g --> J /\ ( ( U \ dom g ) X. { (/) } ) : ( U \ dom g ) --> J ) /\ ( dom g i^i ( U \ dom g ) ) = (/) ) -> ( g u. ( ( U \ dom g ) X. { (/) } ) ) : ( dom g u. ( U \ dom g ) ) --> J ) |
65 |
54 61 63 64
|
syl21anc |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> ( g u. ( ( U \ dom g ) X. { (/) } ) ) : ( dom g u. ( U \ dom g ) ) --> J ) |
66 |
|
simprl2 |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> dom g C_ U ) |
67 |
|
undif |
|- ( dom g C_ U <-> ( dom g u. ( U \ dom g ) ) = U ) |
68 |
66 67
|
sylib |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> ( dom g u. ( U \ dom g ) ) = U ) |
69 |
68
|
feq2d |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> ( ( g u. ( ( U \ dom g ) X. { (/) } ) ) : ( dom g u. ( U \ dom g ) ) --> J <-> ( g u. ( ( U \ dom g ) X. { (/) } ) ) : U --> J ) ) |
70 |
65 69
|
mpbid |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> ( g u. ( ( U \ dom g ) X. { (/) } ) ) : U --> J ) |
71 |
|
simpr |
|- ( ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ran g ) -> ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ran g ) |
72 |
|
simprrl |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> ran g Ref U ) |
73 |
72
|
adantr |
|- ( ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ran g ) -> ran g Ref U ) |
74 |
71 73
|
eqbrtrd |
|- ( ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ran g ) -> ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) Ref U ) |
75 |
|
simpr |
|- ( ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. { (/) } ) ) -> ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. { (/) } ) ) |
76 |
49
|
simprd |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> U =/= (/) ) |
77 |
|
refun0 |
|- ( ( ran g Ref U /\ U =/= (/) ) -> ( ran g u. { (/) } ) Ref U ) |
78 |
72 76 77
|
syl2anc |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> ( ran g u. { (/) } ) Ref U ) |
79 |
78
|
adantr |
|- ( ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. { (/) } ) ) -> ( ran g u. { (/) } ) Ref U ) |
80 |
75 79
|
eqbrtrd |
|- ( ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. { (/) } ) ) -> ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) Ref U ) |
81 |
|
rnxpss |
|- ran ( ( U \ dom g ) X. { (/) } ) C_ { (/) } |
82 |
|
sssn |
|- ( ran ( ( U \ dom g ) X. { (/) } ) C_ { (/) } <-> ( ran ( ( U \ dom g ) X. { (/) } ) = (/) \/ ran ( ( U \ dom g ) X. { (/) } ) = { (/) } ) ) |
83 |
81 82
|
mpbi |
|- ( ran ( ( U \ dom g ) X. { (/) } ) = (/) \/ ran ( ( U \ dom g ) X. { (/) } ) = { (/) } ) |
84 |
|
rnun |
|- ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. ran ( ( U \ dom g ) X. { (/) } ) ) |
85 |
|
uneq2 |
|- ( ran ( ( U \ dom g ) X. { (/) } ) = (/) -> ( ran g u. ran ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. (/) ) ) |
86 |
84 85
|
eqtrid |
|- ( ran ( ( U \ dom g ) X. { (/) } ) = (/) -> ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. (/) ) ) |
87 |
|
un0 |
|- ( ran g u. (/) ) = ran g |
88 |
86 87
|
eqtrdi |
|- ( ran ( ( U \ dom g ) X. { (/) } ) = (/) -> ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ran g ) |
89 |
|
uneq2 |
|- ( ran ( ( U \ dom g ) X. { (/) } ) = { (/) } -> ( ran g u. ran ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. { (/) } ) ) |
90 |
84 89
|
eqtrid |
|- ( ran ( ( U \ dom g ) X. { (/) } ) = { (/) } -> ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. { (/) } ) ) |
91 |
88 90
|
orim12i |
|- ( ( ran ( ( U \ dom g ) X. { (/) } ) = (/) \/ ran ( ( U \ dom g ) X. { (/) } ) = { (/) } ) -> ( ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ran g \/ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. { (/) } ) ) ) |
92 |
83 91
|
mp1i |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> ( ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ran g \/ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. { (/) } ) ) ) |
93 |
74 80 92
|
mpjaodan |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) Ref U ) |
94 |
|
simprrr |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> ran g e. ( LocFin ` J ) ) |
95 |
94
|
adantr |
|- ( ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ran g ) -> ran g e. ( LocFin ` J ) ) |
96 |
71 95
|
eqeltrd |
|- ( ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ran g ) -> ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) e. ( LocFin ` J ) ) |
97 |
94
|
adantr |
|- ( ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. { (/) } ) ) -> ran g e. ( LocFin ` J ) ) |
98 |
|
snfi |
|- { (/) } e. Fin |
99 |
98
|
a1i |
|- ( ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. { (/) } ) ) -> { (/) } e. Fin ) |
100 |
59
|
adantr |
|- ( ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. { (/) } ) ) -> (/) e. J ) |
101 |
100
|
snssd |
|- ( ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. { (/) } ) ) -> { (/) } C_ J ) |
102 |
101
|
unissd |
|- ( ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. { (/) } ) ) -> U. { (/) } C_ U. J ) |
103 |
|
lfinun |
|- ( ( ran g e. ( LocFin ` J ) /\ { (/) } e. Fin /\ U. { (/) } C_ U. J ) -> ( ran g u. { (/) } ) e. ( LocFin ` J ) ) |
104 |
97 99 102 103
|
syl3anc |
|- ( ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. { (/) } ) ) -> ( ran g u. { (/) } ) e. ( LocFin ` J ) ) |
105 |
75 104
|
eqeltrd |
|- ( ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) = ( ran g u. { (/) } ) ) -> ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) e. ( LocFin ` J ) ) |
106 |
96 105 92
|
mpjaodan |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) e. ( LocFin ` J ) ) |
107 |
|
refrel |
|- Rel Ref |
108 |
107
|
brrelex2i |
|- ( V Ref U -> U e. _V ) |
109 |
|
difexg |
|- ( U e. _V -> ( U \ dom g ) e. _V ) |
110 |
5 108 109
|
3syl |
|- ( ph -> ( U \ dom g ) e. _V ) |
111 |
110
|
adantr |
|- ( ( ph /\ U =/= (/) ) -> ( U \ dom g ) e. _V ) |
112 |
|
p0ex |
|- { (/) } e. _V |
113 |
|
xpexg |
|- ( ( ( U \ dom g ) e. _V /\ { (/) } e. _V ) -> ( ( U \ dom g ) X. { (/) } ) e. _V ) |
114 |
112 113
|
mpan2 |
|- ( ( U \ dom g ) e. _V -> ( ( U \ dom g ) X. { (/) } ) e. _V ) |
115 |
|
vex |
|- g e. _V |
116 |
|
unexg |
|- ( ( g e. _V /\ ( ( U \ dom g ) X. { (/) } ) e. _V ) -> ( g u. ( ( U \ dom g ) X. { (/) } ) ) e. _V ) |
117 |
115 116
|
mpan |
|- ( ( ( U \ dom g ) X. { (/) } ) e. _V -> ( g u. ( ( U \ dom g ) X. { (/) } ) ) e. _V ) |
118 |
|
feq1 |
|- ( f = ( g u. ( ( U \ dom g ) X. { (/) } ) ) -> ( f : U --> J <-> ( g u. ( ( U \ dom g ) X. { (/) } ) ) : U --> J ) ) |
119 |
|
rneq |
|- ( f = ( g u. ( ( U \ dom g ) X. { (/) } ) ) -> ran f = ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) ) |
120 |
119
|
breq1d |
|- ( f = ( g u. ( ( U \ dom g ) X. { (/) } ) ) -> ( ran f Ref U <-> ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) Ref U ) ) |
121 |
119
|
eleq1d |
|- ( f = ( g u. ( ( U \ dom g ) X. { (/) } ) ) -> ( ran f e. ( LocFin ` J ) <-> ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) e. ( LocFin ` J ) ) ) |
122 |
118 120 121
|
3anbi123d |
|- ( f = ( g u. ( ( U \ dom g ) X. { (/) } ) ) -> ( ( f : U --> J /\ ran f Ref U /\ ran f e. ( LocFin ` J ) ) <-> ( ( g u. ( ( U \ dom g ) X. { (/) } ) ) : U --> J /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) Ref U /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) e. ( LocFin ` J ) ) ) ) |
123 |
122
|
spcegv |
|- ( ( g u. ( ( U \ dom g ) X. { (/) } ) ) e. _V -> ( ( ( g u. ( ( U \ dom g ) X. { (/) } ) ) : U --> J /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) Ref U /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) e. ( LocFin ` J ) ) -> E. f ( f : U --> J /\ ran f Ref U /\ ran f e. ( LocFin ` J ) ) ) ) |
124 |
111 114 117 123
|
4syl |
|- ( ( ph /\ U =/= (/) ) -> ( ( ( g u. ( ( U \ dom g ) X. { (/) } ) ) : U --> J /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) Ref U /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) e. ( LocFin ` J ) ) -> E. f ( f : U --> J /\ ran f Ref U /\ ran f e. ( LocFin ` J ) ) ) ) |
125 |
124
|
imp |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( g u. ( ( U \ dom g ) X. { (/) } ) ) : U --> J /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) Ref U /\ ran ( g u. ( ( U \ dom g ) X. { (/) } ) ) e. ( LocFin ` J ) ) ) -> E. f ( f : U --> J /\ ran f Ref U /\ ran f e. ( LocFin ` J ) ) ) |
126 |
49 70 93 106 125
|
syl13anc |
|- ( ( ( ph /\ U =/= (/) ) /\ ( ( Fun g /\ dom g C_ U /\ ran g C_ J ) /\ ( ran g Ref U /\ ran g e. ( LocFin ` J ) ) ) ) -> E. f ( f : U --> J /\ ran f Ref U /\ ran f e. ( LocFin ` J ) ) ) |
127 |
48 126
|
exlimddv |
|- ( ( ph /\ U =/= (/) ) -> E. f ( f : U --> J /\ ran f Ref U /\ ran f e. ( LocFin ` J ) ) ) |
128 |
46 127
|
pm2.61dane |
|- ( ph -> E. f ( f : U --> J /\ ran f Ref U /\ ran f e. ( LocFin ` J ) ) ) |